首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA sequence data are often utilized in disease studies, conservation genetics and forensic identification. The current approaches for sequencing the full mtGenome typically require several rounds of PCR enrichment during Sanger or MPS protocols followed by fairly tedious assembly and analysis. Here we describe an efficient approach to sequencing directly from genomic DNA samples without prior enrichment or extensive library preparation steps. A comparison is made between libraries sequenced directly from native DNA and the same samples sequenced from libraries generated with nine overlapping mtDNA amplicons on the Oxford Nanopore MinION? device. The native and amplicon library preparation methods and alternative base calling strategies were assessed to establish error rates and identify trends of discordance between the two library preparation approaches. For the complete mtGenome, 16 569 nucleotides, an overall error rate of approximately 1.00% was observed. As expected with mtDNA, the majority of error was detected in homopolymeric regions. The use of a modified basecaller that corrects for ambiguous signal in homopolymeric stretches reduced the error rate for both library preparation methods to approximately 0.30%. Our study indicates that direct mtDNA sequencing from native DNA on the MinION? device provides comparable results to those obtained from common mtDNA sequencing methods and is a reliable alternative to approaches using PCR‐enriched libraries.  相似文献   

2.
MiniSTR loci have been demonstrated to be an effective approach in recovering genetic information from degraded specimens, because of the reduced PCR amplicon sizes which improved the PCR efficiency. Eight non‐combined DNA index system miniSTR loci suitable for the Chinese Han Population were analyzed in 300 unrelated Chinese Han individuals using two novel five fluorescence‐labeled miniSTR multiplex systems(multiplex I: D10S1248, D2S441, D1S1677 and D9S2157; multiplex II: D9S1122, D10S1435, D12ATA63, D2S1776 and Amelogenin). The allele frequency distribution and forensic parameters in the Chinese Han Population were reported in this article. The Exact Test demonstrated that all loci surveyed here were found to be no deviation from Hardy–Weinberg equilibrium. The accumulated power of discrimination and power of exclusion for the eight loci were 0.999999992 and 0.98, respectively. The highly degraded DNA from artificially degraded samples and the degraded forensic case work samples was assessed with the two miniSTR multiplex systems, and the results showed that the systems were quite effective.  相似文献   

3.
Unbalanced and degraded mixtures (UDM) are frequently encountered during forensic DNA analysis. For example, forensic DNA units regularly encounter DNA mixture signal where the DNA signal from the alleged offender is masked or swamped by high quantities of DNA from the victim. Our previous data presented a new kind of DNA markers that composed of a deletion/insertion polymorphism (DIP) and a SNP and we termed this new kind of microhaplotypes DIP‐SNP (combination of DIP and SNP). Since such markers could be designed short enough for degraded DNA amplification, we hypothesized that DIP‐SNP markers are applicable for typing of UDM. In this study, we developed a new set of DIP‐SNPs with short amplicons which were complement to our prior developed system. The multiplex PCR and SNaPshot assay were established for 20 DIP‐SNPs in a Chinese Han population. The DIP‐SNPs were capable of detecting the minor contributor's allele in home‐made DNA mixture with sensitivities from 1:100 to 1:1000 with a total of 1 –10 ng input DNA. Moreover, this system successfully typed the degraded DNA whether it came from the single source or mixture samples. In Chinese population, the system showed an average informative value of 0.293 and combined informative value of 0.998363862. Our results demonstrated that DIP‐SNPs may serve as a valuable tool in detection of UDM in forensic medicine.  相似文献   

4.
The growing importance of analyzing the human genome to detect hereditary and infectious diseases associated with specific DNA sequences has motivated us to develop automated devices to integrate sample preparation, real-time PCR, and microchannel electrophoresis (MCE). In this report, we present results from an optimized compact system capable of processing a raw sample of blood, extracting the DNA, and performing a multiplexed PCR reaction. Finally, an innovative electrophoretic separation was performed on the post-PCR products using a unique MCE system. The sample preparation system extracted and lysed white blood cells (WBC) from whole blood, producing DNA of sufficient quantity and quality for a polymerase chain reaction (PCR). Separation of multiple amplicons was achieved in a microfabricated channel 30 microm x 100 microm in cross section and 85 mm in length filled with a replaceable methyl cellulose matrix operated under denaturing conditions at 50 degrees C. By incorporating fluorescent-labeled primers in the PCR, the amplicons were identified by a two-color (multiplexed) fluorescence detection system. Two base-pair resolution of single-stranded DNA (PCR products) was achieved. We believe that this integrated system provides a unique solution for DNA analysis.  相似文献   

5.
Semi‐nested PCR with allele‐specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP‐STR markers were available to identify the minor DNA component using AS‐PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP‐STR markers. Five pairs of allele‐specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS‐PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (~30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS‐PCR combined with semi‐nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.  相似文献   

6.
Direct electrochemical genosensor was developed for the detection of a probe sequence relative position in a PCR amplicon for the optimum detection of bacterial and microbiological diseases, in this study. The genosensor relies on a label-free electrochemical detection. The amino-linked inosine modified (guanine-free) coequal capture probes which were chosen from different parts of a PCR amplicon, immobilized on to disposable pencil graphite electrodes (PGE) by electrostatically and covalently. As a model case Hepatitis B virus (HBV) genome amplicon was used for the detection and specification. Hybridization was occurred after surface coverage with denatured amplicons. After hybridization, optimum probe sequence position was identified by using the differences between the responses of guanine oxidation signals. The results of this study might have a great convenience for the microbiological diseases detection applications such as DNA micro arrays.  相似文献   

7.
Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.  相似文献   

8.
DNA analysis of degraded samples and low-copy number DNA derived from skeletal remains, one of the most challenging forensic tasks, is common in disaster victim identification and genetic analysis of historical materials. Massively parallel sequencing (MPS) is a useful technique for STR analysis that enables the sequencing of smaller amplicons compared with conventional capillary electrophoresis (CE), which is valuable for the analysis of degraded DNA. In this study, 92 samples of human skeletal remains (70+ years postmortem) were tested using an in-house MPS-STR system designed for the analysis of degraded DNA. Multiple intrinsic factors of DNA from skeletal remains that affect STR typing were assessed. The recovery of STR alleles was influenced more by DNA input amount for amplification rather than DNA degradation, which may be attributed from the high quantity and quality of libraries prepared for MPS run. In addition, the higher success rate of STR typing was achieved using the MPS-STR system compared with a commercial CE-STR system by providing smaller sized fragments for amplification. The results can provide constructive information for the analysis of degraded sample, and this MPS-STR system will contribute in forensic application with regard to skeletal remain sample investigation.  相似文献   

9.
A novel strategy for avian species identification by cytochrome b gene   总被引:1,自引:0,他引:1  
We report a DNA-based test that can be applied to any avian species so that the amplicon can be used in species identification. The need for the test arose from the requirement to enforce the Wildlife Conservation Act in Taiwan where over 150 avian species are protected. It is difficult to enforce the law if no gross morphology is present and hence there is a requirement to develop a DNA test. This study uses a novel strategy for avian species identification by the cytochrome b gene where a series of primer pairs producing amplicons of decreasing size was designed. The test is designed to produce the largest possible amplicon based upon the quality of the DNA in the sample. A total of 331 avian samples were tested representing 40 species. Sequencing of the amplicons revealed limited intraspecies variation and that no DNA sequence was shared by samples from two different avian species. The closest genetic distance among the 40 species was 0.059 which was between Lonchura punctulata and Estrilda melpoda based upon data from the smallest amplicon. A DNA databank including 138 sequence types from 331 samples tested, representing 40 different species, was constructed in this study. A blind test was used to determine the value for this system for forensic applications that successfully identified the species.  相似文献   

10.
DNA genotyping from trace and highly degraded biological samples is one of the most significant challenges of forensic DNA identification. There is a lack of simple and effective methods for genotyping highly degraded samples. In this study, a multiple loci insertion/deletion polymorphisms (Multi-InDels) panel was designed for detecting 18 autosomal Multi-InDels through capillary electrophoresis (CE) with amplicon sizes no longer than 125 bp. Studies of sensitivity, degradation, and species specificity were performed and a population study was carried out using 192 samples from Han populations in Hunan province in the south of China. The combined random match probability (CMP) of these 18 Multi-InDels was 3.23 × 10–12 and the cumulative probability of exclusion (CPE) was 0.9989, suggesting this panel could be used independently for human identification and could provide efficient supporting information for parentage testing. Complete profiles were obtained from as low as 62.5 pg of total input DNA after increasing the number of PCR cycles. Moreover, all alleles were detected from artificially highly degraded DNA after 80 min of boiling water bath treatment. This 18 Multi-InDels panel is simple, fast, and effective for the forensic analysis of highly degraded DNA.  相似文献   

11.
Improved STR typing of telogen hair root and hair shaft DNA   总被引:1,自引:0,他引:1  
Today the STR typing of telogen hair and hair shafts is regarded as a challenge. The small DNA quantity in the hair is highly degraded. Another problem are PCR inhibitors in the hair. In particular hair pigments, the melanins, are known to inhibit PCR. Hairs are exposed to sunlight and partly to chemical oxidation processes, which make them even more difficult to analyze. To increase the chances of a correct typing of hair, the small amount of DNA must be successfully isolated and the inhibitors have to be removed or neutralized. Furthermore, miniSTR typing improves the analysis of stains with degraded DNA like it is the case with hair. We introduce a nonorganic extraction method and in addition a miniSTR concept which is promising in typing stains with little and degraded DNA, especially hairs. The miniSTR concept including five database STRs (SE33, VWA, TH01, FGA, D3S1358) and the gender typing system Amelogenin was optimized for the amplification of hair DNA. Compared to commercial STR kits, this approach resulted in considerably higher success rates.  相似文献   

12.
DNA profiling of short tandem repeats (STR) has been successfully used for the identification of individuals in forensic samples, accidents and natural disasters. However, STR profiling of DNA isolated from old crime scenes and damaged biological samples is difficult due to DNA degradation and fragmentation. Here, we show that pre‐amplification of STR loci using biotinylated primers for the STR loci is an efficient strategy to obtain STR profiling results from fragmented forensic samples. Analysis of STR loci with longer amplicon sizes is generally hampered, since these relatively long loci are vulnerable to DNA fragmentation. This problem was overcome by using reduced or increased primer concentrations for loci with shorter or longer amplicon sizes, respectively, in our pre‐amplification strategy. In addition, pre‐amplification of STR loci into two groups of short or long amplicon size increases the efficiency of STR profiling from highly fragmented forensic DNA samples. Therefore, differential pre‐amplification of STR loci is an effective way to obtain DNA profiling results from fragmented forensic samples.  相似文献   

13.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

14.
The Standard Reference Materials Program at the US National Institute of Standards and Technology (NIST) has three human DNA standard reference materials (SRM 2390, SRM 2391a, and SRM 2392) currently available [1, 2]. Both the DNA profiling SRM 2390 and the polymerase chain reaction (PCR)-based DNA profiling SRM 2391a are intended for use in forensic and paternity identifications, for instructional law enforcement, or for non-clinical research purposes and are not intended for clinical diagnostics. The mitochondrial DNA (mtDNA) SRM 2392 is to provide standardization and quality control when performing PCR and sequencing any segment or the entire 16,569 base pairs that comprise human mitochondrial DNA. SRM 2392 is designed for use by the forensic, medical, and toxicological communities for human identification, disease diagnosis or mutation detection.  相似文献   

15.
A polymerase chain reaction (PCR) assay was developed and compared with standard methods for rapid detection of Burkholderia cepacia, a major industrial contaminant, in cosmetic and pharmaceutical raw materials and finished products. Artificially contaminated samples were incubated for 24 h in trypticase soy broth containing 4% Tween 20 and 0.5% soy lecithin. DNA was extracted from each sample using a proteinase K-tris-EDTA-Tween 20 treatment at 35 degrees C. The extracted DNA was added to Ready-To-Go PCR beads and specific DNA primers for B. cepacia. The B. cepacia DNA primers coded for a 209-base pair (bp) fragment of the 16S rRNA ribosomal gene. No DNA amplification was observed in samples that were not spiked with B. cepacia. However, all contaminated samples showed the specific 209-bp fragment for B. cepacia. There was a 100% correlation between standard methods and the PCR assay. Standard microbiological methods required 5-6 days for isolation and identification of spiked microorganisms, whereas PCR detection and identification was completed in 27 h. PCR detection of B. cepacia allows for rapid quality evaluation of cosmetic and pharmaceutical raw materials and finished products.  相似文献   

16.
Lab‐on‐a‐chip provides an ideal platform for short tandem repeat (STR) genotyping due to its intrinsic low sample consumption, rapid analysis, and high‐throughput capability. One of the challenges, however, in the forensic human identification on the microdevice is the detection sensitivity derived from the nanoliter volume sample handling. To overcome such a sensitivity issue, here we developed a sample stacking CE microdevice for mini Y STR genotyping. The mini Y STR includes redesigned primer sequences to generate smaller‐sized PCR amplicons to enhance the PCR efficiency and the success rate for a low copy number and degraded DNA. The mini Y STR amplicons occupied in the 5‐ and 10‐mm stacking microchannels are preconcentrated efficiently in a defined narrow region through the optimized sample stacking CE scheme, resulting in more than tenfold improved fluorescence peak intensities compared with that of a conventional cross‐injection microcapillary electrophoresis method. Such signal enhancement allows us to successfully analyze the Y STR typing with only 25 pg of male genomic DNA, with high background of female genomic DNA, and with highly degraded male genomic DNA. The combination of the mini Y STR system with the novel sample stacking CE microdevice provides the highly sensitive Y STR typing on a chip, making it promising to perform high‐performance on‐site forensic human identification.  相似文献   

17.
Eshleman J  Smith DG 《Electrophoresis》2001,22(20):4316-4319
Using polymerase chain reaction (PCR) amplification, it is possible to analyze DNA from limited source template. This method has proved especially valuable in studies of ancient DNA and in forensic investigations. However, PCR reactions containing minimal or damaged source template are prone to contamination by DNA from a number of other sources. While standard protocols to prevent and/or detect contamination do exist, methods of eliminating contamination are needed to ensure the validity of results obtained. We present a method to eliminate sources of contamination in reagents and labware through the use of a DNase prior to PCR amplification without damaging even the minimal amounts of template present in ancient DNA samples. This method, suggested previously for forensics applications, appears to be effective in eliminating contamination without interfering with the amplification of ancient template.  相似文献   

18.
DNA analysis plays a great role in genetic and medical research, and clinical diagnosis of inherited diseases and particular cancers. Development of new methods for high throughput DNA analysis is necessitated with incoming of post human genome era. A new powerful analytical technology, called microchip capillary electrophoresis (MCE), can be integrated with some experimental units and is characterized by high-speed, small sample and reagent requirements and high-throughput. This new technology, which has been applied successfully to the separation of DNA fragments, analysis of polymerase chain reaction (PCR) products, DNA sequencing, and mutation detection, for example, will become an attractive alternative to conventional methods such as slab gel electrophoresis, Southern blotting and Northern blotting for DNA analysis. This review is focused on some basic issues about DNA analysis by MCE, such as fabrication methods for microchips, detection system and separation schemes, and several key applications are summarized.  相似文献   

19.
《Electrophoresis》2017,38(8):1163-1174
Next generation sequencing (NGS) is the emerging technology in forensic genomics laboratories. It offers higher resolution to address most problems of human identification, greater efficiency and potential ability to interrogate very challenging forensic casework samples. In this study, a trial set of DNA samples was artificially degraded by progressive aqueous hydrolysis, and analyzed together with the corresponding unmodified DNA sample and control sample 2800 M, to test the performance and reliability of the ForenSeqTM DNA Signature Prep kit using the MiSeq Sequencer (Illumina). The results of replicate tests performed on the unmodified sample (1.0 ng) and on scalar dilutions (1.0, 0.5 and 0.1 ng) of the reference sample 2800 M showed the robustness and the reliability of the NGS approach even from sub‐optimal amounts of high quality DNA. The degraded samples showed a very limited number of reads/sample, from 2.9–10.2 folds lower than the ones reported for the less concentrated 2800 M DNA dilution (0.1 ng). In addition, it was impossible to assign up to 78.2% of the genotypes in the degraded samples as the software identified the corresponding loci as “low coverage” (< 50x). Amplification artifacts such as allelic imbalances, allele drop outs and a single allele drop in were also scored in the degraded samples. However, the ForenSeqTM DNA Sequencing kit, on the Illumina MiSeq, was able to generate data which led to the correct typing of 5.1–44.8% and 10.9–58.7% of 58 of the STRs and 92 SNPs, respectively. In all trial samples, the SNP markers showed higher chances to be typed correctly compared to the STRs. This NGS approach showed very promising results in terms of ability to recover genetic information from heavily degraded DNA samples for which the conventional PCR/CE approach gave no results. The frequency of genetic mistyping was very low, reaching the value of 1.4% for only one of the degraded samples. However, these results suggest that further validation studies and a definition of interpretation criteria for NGS data are needed before implementation of this technique in forensic genetics.  相似文献   

20.
A new electrochemical sequence‐specific DNA detection platform based on primer generation‐rolling circle amplification (PG‐RCA), methylene blue (MB) redox indicator, and indium tin oxide (ITO) electrode is reported. In the presence of a specific target sequence, PG‐RCA, an isothermal DNA amplification technique, produced large amounts of amplicons in an exponential manner. In addition to the standard components, the reaction mixture contained MB, which bound with the PG‐RCA amplicons. End‐point electrochemical measurement by differential pulse voltammetry (DPV) was performed using ITO electrode. The amplicon‐bound MB resulted in a lower DPV signal than free MB due to a smaller diffusion coefficient as well as electrostatic repulsion between the negatively charged amplicon‐bound MB and ITO electrode. With simple assay design (recognition probe) and instrumentation (operating temperature at 37 °C and ITO electrode without the need for probe immobilization), this detection platform is well suited for point‐of‐care and on‐site testing. Real‐time measurement was also achieved by pretreating the ITO electrode with bovine serum albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号