首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
袁俊杰  杨正龙 《化学学报》2009,67(21):2495-2499
首先通过乳化法得到磁性明胶微球, 然后在高速搅拌条件下向乳液中直接加入正硅酸乙酯(TEOS), 制备出多孔磁性明胶微球. 用SEM, TEM观察了微球的微观形貌, 发现微球呈疏松多孔状结构. 用FT-IR, TGA, VSM等测试手段对微球的结构和性能进行表征. 结果表明, 二氧化硅掺杂于磁性明胶微球中. TEOS在反应中作为明胶微球的交联固化剂, 推测其固化机理是物理交联固化. 实验证实二氧化硅改性后, 磁性明胶微球内部磁性颗粒氧化速度有所降低. 所得到的多孔磁性明胶微球表现出铁磁性.  相似文献   

2.
利用昆虫雌性激素对昆虫进行干扰交配是近年来使用的一种新技术,可替代农药杀虫剂达到高选择性无毒无药灭害的目的.鉴于十二醇(C12H25OH)与简单的昆虫激素化合物十二碳烯醇、十二碳烯二醇等结构相近,使用C12H25OH作为昆虫激素的模拟物,探索使用聚合物微球水分散体系将昆虫激素模拟物C12H25OH包覆在聚合物微球中,通过改变水分散体系的制备方法、复合微球壁的交联度等探讨了此类体系对C12H25OH的可控释放.首先通过测定阿拉伯胶明胶复凝聚过程的透光率、ζ电位,确定了阿拉伯胶-明胶的质量配比为1时可达最大复凝聚.在此基础上,制备了一系列交联剂戊二醛含量不同的复合微胶囊.结果表明微胶囊壁材的交联度随交联剂量明显上升,其对C12H25OH的包覆率经1%戊二醛交联后即提高至未交联体系的约三倍.但进一步提高戊二醛的含量,虽然胶囊的交联度仍明显上升,但对C12H25OH的包覆率基本保持恒定.使用同样量的甲醛可达同样交联效果,但对C12H25OH的包覆率有明显提高.在恒温恒湿条件下对各胶囊的C12H25OH释放行为进行了表征,结果显示交联胶囊可明显提高C12H25OH的恒速释放时间,交联度越高,恒速释放越稳定.本工作表明通过本方法确实可以达到将昆虫激素包覆在聚合物颗粒中并达到可控释放.  相似文献   

3.
昆虫激素十二醇微胶囊的制备与释放行为研究   总被引:4,自引:1,他引:3  
利用昆虫雌性激素对昆虫进行干扰交配是近年来使用的一种新技术,可替代农药杀虫剂达到高选择性无毒无药灭害的目的。迄今为止的相关研究及应用技术都是使用载有昆虫激素的棉条、纸片、塑胶管等装置,以一定密度置于果园或农田。十二醇是较为简单的一个存在于多种昆虫的雌性激素中化合物。本文首次探索使用聚合物微球水分散体系将昆虫激素十二醇(C12OH)包覆在聚合物微球中,通过改变水分散体系的制备方法、复合微球壁的交联度等探讨了此类体系对C12OH的可控释放。本工作首先通过测定阿拉伯胶明胶复凝聚过程的透光率、ζ电位,确定了阿拉伯胶-明胶的重量配比为1时可达最大复凝聚。在此基础上,制备了一系列不同交联剂戊二醛含量的复合微胶囊。结果表明微胶囊壁材的交联度随交联剂量明显上升,其对C12OH的包覆率经1%戊二醛交联后即提高至未交联体系的约三倍。但进一步提高戊二醛的含量,虽然胶囊的交联度仍明显上升,但对C12OH的包覆率基本保持恒定。使用同样量的甲醛可达同样交联效果,但对C12OH的包覆率有明显提高。在恒温恒湿条件下对各胶囊的C12OH释放行为进行了表征,结果显示交联胶囊可明显提高C12OH的恒速释放时间,交联度越高,恒速释放越稳定。本工作表明通过本方法确实可以达到将昆虫激素包覆在聚合物颗粒中并达到可控释放。  相似文献   

4.
利用同轴静电纺丝制备了具有核壳结构纳米纤维的未交联敷料,其中纤维内核为载有抗菌药物莫匹罗星的聚己内酯(PCL),外壳则由载有麻醉剂利多卡因的胶原构成;通过京尼平将胶原外壳交联后得到交联敷料.用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了未交联敷料的表面形貌和纤维的核壳结构.体外药物释放实验结果表明,在2种敷料中,2种药物在1 h内均出现了突释现象,而在随后的60 h中,2种药物均能从敷料中缓慢释放出来,说明2种敷料均具有较好的持续止痛与抗菌性能.二辛可宁酸(Bicinchonininc acid,BCA)蛋白测试结果表明,未交联敷料外壳上的胶原蛋白能够持续地释放出来.体外细胞培养结果表明,与交联敷料相比,未交联敷料能够更好地促进成纤维细胞L929的黏附和生长,具有更好的促进伤口愈合作用.体外抗菌实验结果显示,负载了莫匹罗星的2种敷料的抗菌性能均明显高于对照组,具有良好的抗菌性能.  相似文献   

5.
作为细胞微载体的明胶基缓释微球的制备   总被引:7,自引:0,他引:7  
用改良的乳化冷凝法制备载牛血清蛋白(BSA)的大粒径明胶微球. 结果表明, 明胶水溶液的质量分数为25%、水相与油相体积比3∶20、搅拌速度300 r/min、交联剂用0.1 mL质量分数为25%的戊二醛、 表面活性剂用0.1 g span-80为制备平均直径约250 μm明胶微球的理想条件. 所制备微球的后处理方法不同, 则明胶微球的表面形貌也不同, 细胞粘附率不同. 空白明胶微球在体外可以完全降解, 载BSA的明胶微球对BSA具有良好的缓释性, 释放时间可长达30 d. 显微镜观察成纤维细胞在明胶微载体上生长良好.  相似文献   

6.
无需加入模板和表面活性剂,采用简单的溶剂热法合成多级结构NiO微球前驱体,再经450℃热处理,得到多级结构NiO微球纳米材料。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附-脱附等技术对制备的材料进行结构及形貌分析。结果表明,合成的NiO微球直径600~800 nm,构筑单元为厚度约40 nm的多孔纳米片。该NiO微球纳米材料对刚果红(CR)染料表现出优良的吸附性能:当NiO吸附剂用量0.25 g/L,刚果红(CR)染料的质量浓度15 mg/L时,吸附10 min即可达到吸附平衡,此后移除率稳定在98.6%~99.7%,最大吸附容量为387.1 mg/g。该吸附过程符合拟二级动力学方程和朗格缪尔(Langmuir)吸附等温模型。NiO微球具有三维立体的多级结构及大的比表面积和介孔结构,是一种高效的处理废水中有机染料的吸附剂。  相似文献   

7.
采用悬浮聚合方法合成了多孔交联聚苯乙烯微球,研究发现微球的粒径与分散剂含量、水油比、搅拌速度和成孔剂有关,而微球的孔径与成孔剂的种类和含量有关。 增加分散剂的用量,提高水油比和加快搅拌速度都能导致微球的粒径减小。 微球的孔径和粒径均随着成孔剂与聚合物溶度参数差值变大而增加。通过改变以上条件得到粒径为100~300 μm和孔径为8~36 nm的交联度为27%的多孔交联聚苯乙烯微球,并利用光学显微镜、场发射扫描电子显微镜(SEM)和氮气吸附解吸法对微球进行了相应的表征。 得到的微球在固相合成载体中有一定的应用前景。  相似文献   

8.
壳聚糖多孔微球负载PdCl2选择性催化氢化氯代硝基苯的研究   总被引:14,自引:1,他引:14  
以壳聚糖为原料,液体石蜡为分散介质,甲醛,戊二醛为交联剂,通过反相悬浮交联制备了粒径小于100μm的壳聚糖多孔微球;对制备壳聚糖多孔微球的影响因素进行了探讨,并用FTIR和SEM表征了多孔微球;XPS表明,壳聚糖多孔微球经PdCl2负载后,PdCl2与壳聚糖形成配合物,配位键是在PdCl2的Pd与壳聚糖的N之间形成。在常温常压下,PdCl2/壳聚糖多孔微球能选择性地催化还原氯代硝基苯为氯苯胺;对影响催化加氢的因素如反应温度、溶剂、催化剂用量和底物浓度作了探讨。  相似文献   

9.
原子转移自由基聚合原位合成温敏性微球   总被引:1,自引:0,他引:1  
以过硫酸钾为引发剂、丙酮-水[V(丙酮)∶V(水)=4∶6]的混合溶剂为反应介质, 在少量二乙烯苯存在的条件下使苯乙烯(St)和对氯甲基苯乙烯(CMSt)进行无皂乳液共聚反应, 得到了粒径大小均匀的交联型聚苯乙烯(PSt)微球, 由X射线光电子能谱对表面组分测定发现: CMSt上的氯原子在聚合过程中富集于交联微球的表面. 以此交联型PSt微球为原子转移自由基聚合(ATRP)的引发剂, 在22 ℃下引发N-异丙基丙烯酰胺(NIPAAm)进行原位ATRP反应, 得到了表面原子转移自由基聚合接枝的交联聚苯乙烯(PNIPAAm-g-PSt)温敏性微球. 借助傅立叶变换红外光谱、差示扫描量热仪、扫描电子显微镜及激光光散射仪等对PNIPAAm-g-PSt的结构、相转变温度、形态及不同温度下的粒径变化进行了测定, 结果表明NIPAAm单体成功地原位ATRP接枝在交联PSt微球的表面, 接枝微球的球形更规整, 在水中的相转变温度约为32 ℃, 具有明显的温度敏感性.  相似文献   

10.
明胶/羟基磷灰石复合物微球中明胶对无机相影响的研究   总被引:2,自引:0,他引:2  
在油包水的乳液体系中,通过原位合成的方法使羟基磷灰石(HAP)在明胶链上化学沉积,改变明胶溶液的浓度,制得了一系列的明胶/HAP复合物微球.采用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和热失重分析仪(TGA)等对产物的组成、形貌以及热失重情况进行了表征.结果表明,明胶用量对复合物微球中HAP的形成具有重要影响.在明胶溶液浓度为0.025 g/mL时,明胶分子链提供的结合位点恰好与溶液中游离的Ca2+、PO43-等离子达到平衡状态,复合物微球中无机相含量达40%,这是明胶与HAP以化学键合的形式结合所能得到的最大值.  相似文献   

11.
核壳结构AlOOH的制备、表征及其生长机制   总被引:1,自引:0,他引:1  
在柠檬酸钠和硝酸铝水溶液体系中, 通过一步水热法制备了蜷缩刺猬状和核壳结构的AlOOH微球, 并用X射线衍射(XRD)、Fourier变换红外(FTIR)光谱、扫描电镜(SEM)、透射电镜(TEM)、氮气吸脱附和光致发光等分析手段对制备的样品进行了形貌和结构表征. 对反应时间、反应物浓度等影响因素进行了研究. 实验结果表明: 反应时间和反应物柠檬酸钠的浓度对所得AlOOH微球结构的尺寸和形貌具有重要影响; 蜷缩刺猬状和核壳结构AlOOH微球都具有较大的比表面积, 分别为171.5和178.6 m2·g-1; 不同形貌的AlOOH具有不同的荧光发射峰. 并初步探讨了核壳结构AlOOH微球的生长机制.  相似文献   

12.
明胶微球粒径控制的研究   总被引:2,自引:0,他引:2  
采用乳化-凝聚法,在油包水(w/o)的体系中对明胶微球(GMs)粒径、微球的形态和分散性等进行了研究.扫描电子显微镜(SEM)和粒径分布曲线的结果表明在乳化体系中,提高明胶溶液的浓度或水油比例,明胶微球的粒径增大;增加乳化剂的用量,微球的粒径减小;选择合适的乳化时间和搅拌速率,可以改善微球的分散性和表面光滑程度.同时,通过调控实验条件,在明胶溶液浓度0.100 g/mL,水油比1/5,乳化剂浓度0.05g/mL时研制出了平均粒径为3.58μm的表面光滑、分散性好的明胶微球.  相似文献   

13.
A series of gelatin microspheres (GMs) were prepared through emulsification-coacervation method in water-in-oil (w/o) emulsions. The influence of preparation parameters on particle size, surface morphology, and dispersion of GMs was examined. The studied preparation parameters include concentration of gelatin solutions, concentration of the emulsifier, w/o ratio, emulsifying time, stirring speed, and so on. The surface morphology, dispersion, and particle sizes of GMs were determined by the scanning electron microscopy (SEM), SemAfore 4 Demo software, and particle size distribution graphic charts. The experimental results indicated that increasing the concentration of gelatin solution would increase the particle size of GMs. When the solution concentration increased from 0.050 to 0.200 g/mL gradually, the particle size increased correspondingly. The relationship between the two quantities was linear. On the contrary, increasing the concentration of the emulsifier would decrease the particle size of GMs. Furthermore, the particle size reduced quickly at initial time and slowed down latterly. With the increase of emulsifier concentration from 0 to 0.020 g/mL, themean diameters ofGMsdecreased from 17.32 to 5.38 μm. However, the particle size dwindled slowly when emulsifier concentration was higher than 0.020 g/mL. The excellent result was obtained with the condition of 0.050 g/mL of emulsifier concentration, 0.100 g/mL of gelatin solution concentration, 1/5 of w/o ratio, 10 min of emulsifying time, and 900 r/min of the stirring speed. The GMs prepared at this condition had the smallest sizes, the narrowest size distribution, the best spherical shape, and fluidity. The w/o ratio has the same influence on particle size of GMs as that of gelatin solution concentration. With the increase of w/o ratio, the average particle sizes increased linearly, and the surface of microspheres become smoother as well. It is supposed that w/o ratio can be used to change the diameters and surface morphologies of GMs. The emulsifying time has little influence on the mean diameters of GMs, but it affects the dispersion of GMs apparently. When the emulsifying time was shorter than 5 min, the GMs had bad dispersion. After increasing the emulsifying time to 13 min, the dispersion of GMs changed greatly, whereas the dispersion of GMs became bad again when the emulsifying time was longer than 13 min. According to the experimental results, 13 min was considered to be the best emulsifying time. The stirring speed has the similar influence on GMs’ morphologies as that of emulsifying time. Slow stirring rate made large size distribution and bad spherical shape of GMs; excessive stirring speed results in aggregation among GMs likewise. The smaller size distribution and better spherical shape of GMs were observed under the stirring rate between 500 and 1500 r/min by SEM. In conclusion, increasing the concentration of gelatin solution or w/o ratio would increase the particle sizes of GMs, increasing the concentration of the emulsifier would decrease the sizes of GMs at proper emulsifying time, and stirring speed would get the best spherical shape of GMs. These are the basic laws governing the design and manufacture of the GMs. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

14.
Thermoresponsive submicron-sized core–shell hydrogel particles with incorporated olive oil were synthesised and studied. The microspheres having poly(N-isopropylacrylamide-co-methyl methacrylate) core and poly(N-isopropylacrylamide) shell were synthesised by emulsifier-free seed polymerisation method. The morphology, particle size and distribution characteristics of the core microspheres were studied with different amount of initiator, monomer–solvent ratio and polymerisation time using scanning electron microscopy and dynamic light scattering particle size analysis. The prepared core and core–shell microspheres were regularly spherical with average size of around 190.0 and 320.0 nm respectively and nearly monodispersed size distribution. Transmission electron microscopy study revealed the core–shell structure of the microspheres. The thermoresponsive transition temperature (T t) of the core–shell microspheres was determined as 33 °C by optical absorbance measurement, dynamic light scattering particle size analysis and differential scanning calorimetry. The release rate of olive oil from core–shell microspheres was accelerated by squeezing out the entrapped olive oil as the temperature was increased above T t. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy study indicated the formation of copolymer.  相似文献   

15.
Biocompatible hollow poly(methyl acrylic acid-co-N-isopropylacrylamide-co-ethyleneglycol dimethacrylate)@cellulose succinate (P(MAA-co-NIPAAM-co-EGDMA)@CS) microspheres have been synthesized by employing uniform silica-MPS microspheres as template. Silica spheres were synthesized via Stöber method involving tetraethyl orthosilicate. The surface of resulting silica Stöber microspheres was modified using 3-methacryloxypropyltrimethoxysilane (MPS), a polymerizable silane coupling agent. The above reagent introduces carbon–carbon double bonds on microspheres’ surface. This strategy uses the copolymerization of the following monomers, methacrylic acid (MAA), N-isopropyl acrylamide (NIPAAM) and the ethyleneglycol dimethacrylate (EGDMA), which was used as cross-linker, aiming at fabricating the first shell. Distillation precipitation polymerization method was carried out with 2,2-azobis(2-methylpropionitrile) as initiator in acetonitrile aiming at coating the inorganic microspheres with organic shell of the above-mentioned copolymer. In continuation, cellulose succinate and cellulose powder was absorbed through electrostatic interactions onto microspheres’ surface and the isolated product was cross-linked through esteric bonds formation. The cellulose succinate hollow microspheres were obtained after the silica core removal. The resulting spheres were characterized by Fourier transform infrared spectroscopy and observed by scanning and transmission electron microscopy. Dynamic light scattering was used to study the hydrodynamic diameter of the synthesized microspheres. The anticancer drug daunorubicin was loaded in the spheres, and its release behavior was evaluated at acidic and slightly basic pH conditions, aiming at evaluating its behavior at the healthy and pathogenic tissues.  相似文献   

16.
纳米碳纤维固载TiO_2   总被引:1,自引:1,他引:0  
陈影声  陈震  卢才英  陈日耀  陈晓  郑曦 《应用化学》2010,27(10):1188-1191
采用聚乙烯吡咯烷酮(PVP)溶胶通过静电纺丝法制备了PVP纳米纤维。将PVP纳米纤维直接固载在碳棒上,在250℃预氧化,850℃炭化,得到碳纳米纤维。将碳纤维渍取钛酸丁酯,200℃下热处理后在550℃空气中焙烧,制得负载型纳米TiO2。利用扫描电子显微镜、红外吸收光谱、X射线衍射等测试技术对纳米纤维进行了表征。并把负载型TiO2分散在亚甲基蓝溶液中,分析了TiO2固载纳米碳纤维的光催化活性。结果表明,在100mL20mg/L亚甲基蓝溶液中加入1.0mgTiO2固载碳纳米纤维,光催化降解40min后,亚甲基蓝的分解率接近75%。  相似文献   

17.
The straightforward, efficient, solventless, RAPET (reactions under autogenic pressure at elevated temperature) approach was explored for the fabrication of core-shell nanomaterials. Carbon-encapsulated SnS and SnSe nanorods were synthesized by a one-step thermal decomposition of tetramethyltin in the presence of either S or Se powder in a closed reactor at 700 degrees C for 40 min, under their autogenic pressure in an inert atmosphere. The powder X-ray diffraction measurements provided structural evidence for the formation of pure orthorhombic phases of SnS or SnSe particles. The Raman spectroscopy measurements ensured that the nature of the coated carbon was semigraphitic. The scanning electron micrographs verified the 1D morphology of the formed SnS and SnSe chalcogenides, and their stoichiometry was confirmed by EDAX measurements. The HR-TEM micrographs distinguished between core and shell morphologies. The nitrogen gas adsorption on the surface of core-shell nanostructures was determined by BET surface area analysis. The plausible mechanism for the creation of chalcogenide cores (SnS or SnSe) with a carbon shell was elucidated.  相似文献   

18.
Template-synthesis method was one of the important methods for the preparation of hollow microspheres. In present work, polystyrene (PS) microspheres were initially synthesized and effects of reaction conditions on the particle size and distribution of PS microspheres were studied. Then sulfonated PS (SPS) microspheres and spherical core (PS) /shell (polypyrrole, PPy) were synthesized by sulfonated and template method respectively. The method was that pyrrole (Py) on the surface of SPS microspheres were polymerized. Then PS (core)-PPy (shell) microspheres by dissolving PS inner core in N, N-Dimethylformamide (DMF), and hollow polypyrrole (HPPy) microspheres were obtained (Figure 1). Thereafter, HPPy microspheres were characterized by fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, scanning electron microscope, thermal gravimetric analysis and KDY-4 four-probe resistance meter. The results showed that the size range of PS microspheres were 200~300 nm. HPPy microspheres have been successfully synthesized with good electrical conductivity and excellent thermal stability.  相似文献   

19.
Silica/polypyrrole (PPY) core/shell microspheres and PPY hollow microspheres were prepared by the template of silica particles whose surface character was modified with different modified agents. The morphology and structure of the particles were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Elemental analysis and X-ray photoelectron spectroscopy (XPS) were carried out to characterize the structure of PPY hollow microspheres. We investigated the effect of different modified agents on the surface character of silica particles and the effect of surface character of silica particles on the morphology of PPY hollow microspheres. The effect of reaction conditions on the size of core/shell particles and hollow particles was also studied.  相似文献   

20.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号