首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between ginkgolic acid (GA, C15:0) and bovine serum albumin (BSA) is investigated by several spectroscopic methodologies. At first, the binding characteristics of GA and BSA are determined by fluorescence emission spectra. It is showed that GA quenches the fluorescence of BSA and the static quenching constant KLB is 11.7891×104 L mol?1 s?1 at 297 K. GA and BSA form a 1:1 complex with a binding constant of 9.12×105 L mol?1. GA binds to the Sudlow's drug binding site II in BSA, and the binding distance between them is calculated as 1.63 nm based on the Förster theory. The thermodynamic parameters indicate that the interaction between BSA and GA is driven mainly by hydrophobic forces. On the other hand, structural analysis indicates that GA binding results in an increased hydrophobicity around the tryptophan residues of BSA as revealed by the synchronous fluorescence spectra, and a decrease in α-helix as revealed by the far-UV CD spectra. In addition, ANS, UV–vis and RLS experiments confirmed that GA binding causes a certain structural changes in BSA. These findings provide the binding information between BSA and GA, and may be helpful for pharmacokinetics and the design of dosage forms of GA.  相似文献   

2.
The interactions of silymarin with bovine serum albumin (BSA) and lysozyme (LYS) were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy and UV–vis absorption spectroscopy. The mechanism study indicated that silymarin could strongly quench the intrinsic fluorescence of BSA and LYS through static quenching procedures. At 291 K, the values of the binding constant KA were 4.20×104 and 4.71×104 L mol?1 for silymarin–BSA and silymarin–LYS, respectively. Using thermodynamic equations, the conclusion that hydrophobic and electrostatic forces played an important role in stabilizing complex of silymarin–BSA or silymarin–LYS was obtained. The effects of Cu2+, Mg2+, Ca2+, Fe2+, and Fe3+ on the binding were also studied at 291 K. According to Förster’s nonradiative energy transfer theory, the distances r0 between donor and acceptor were calculated to be 3.36 and 2.71 nm for silymarin–BSA and silymarin–LYS, respectively. Synchronous fluorescence spectra showed that the conformation of BSA and LYS were changed by silymarin.  相似文献   

3.
The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin–BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of BSA–scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA–scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV–vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated.  相似文献   

4.
The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV–vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern–Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were KA (naringenin)=4.08×104<KA (hesperetin)=5.40×104KA (apigenin)=5.32×104 L mol?1. The main binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Förster theory of non-radiation energy transfer, the binding distances (r0) were obtained as 3.36, 3.47 and 3.30 nm for naringenin–BSA, hesperetin–BSA and apigenin–BSA, respectively. The effect of some common ions such as Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (KA) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution.  相似文献   

5.
Highly luminescent complexes of Eu and Tb ions with norfloxacin (NFLX) and gatifloxacin (GFLX) were prepared in sol–gel matrix. The red and green emissions of Eu and Tb ions were obtained by the energy transfer from the triplet state of (NFLX) and (GFLX) to the excited emitting states (5D0 and 5D4) of Eu and Tb, respectively. The intensity of the electric field emission bands (5D07F2, 617 nm and 5D47F5, 545 nm) of Eu and Tb ions were proportional to the concentration of (NFLX at pH 6.0) and (GFLX at pH 3.5) in acetonitrile with excitation wavelengths (λex) (340 and 395) and (370 and 350 nm) for Eu and Tb ions, respectively. The monitored luminescence intensity of the system showed a good linear relationship with the concentration of NFLX within a range of 5×10?9–5.8×10?6 and 5×10?8–1.0×10?6 mol L?1 with a correlation coefficient of 0.990, and for GFLX within a range of 2.4×10?9–3.2×10?5 and 5×10?8–8.0×10?6 mol L?1 with a correlation coefficient of 0.995. The detection limit (LOD) was determined as 3.0×10?9 and 1.0×10?8 mol L?1 for NFLX and 1.6×10?10 and 2.0×10?8mol L?1 for GFLX. The limit of quantification (LOQ) is 9×10?9 and 3.0×10?8 and 4.8×10?10 and 6.0×10?8 in case of Eu and Tb, respectively.  相似文献   

6.
Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin–Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin–Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (Kb) values are of the order of 105 M?1 which increased with rise in temperature in case of HSA and BSA interacting with the quercetin–Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both ΔH° and ΔS° were positive for the interaction of the quercetin–Cu(II) complex with both proteins but the value of ΔH° was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities.  相似文献   

7.
T.B. Wang  H.Y. Xie  W.J. Xu 《Optik》2012,123(2):181-184
We proposed a spectrum method to determine birefraction of the sample. When the infrared incident light transmits in the birefraction direction of the cube crystal, because of the birefraction of the sample, the transmit spectrum appears interference fringes. The equation Δn = 1/[D(/dm)] shows the relationship between the birefraction and the wave-number, with the interference-number of crystals in the infrared band at room temperature. Via the infrared transmitting along the x-axis of cube lithium niobate crystal, the interference fringes were found. By the fitted polynomial method, the relationship of the birefraction and the wave-number or wavelength of the lithium niobate crystal be educed, which is, Δn = 0.4149 ? 9.00174 × 10?5υ + 5.64347 × 10?9υ2,or n = 0.05366 ? 5.20334 × 10?5λ + 3.99694 × 10?8λ2.  相似文献   

8.
This paper reports on a facile technique combined with a simple, sensitive and selective spectrofluorimetric method for the determination of hydrochlorothiazide. In methanol, at pH 8.3 and λex=340, hydrochlorothiazide can remarkably enhance the luminescence intensity of the Eu3+ ion doped in polymethylmethacrylate polymer (PMMA) matrix. This could be due to the energy transfer from hydrochlorothiazide to Eu3+ in the excited stated. At the optimized experimental conditions, the enhancement of the characteristic emission band (617 nm) of Eu3+ ion doped PMMA is directly proportional to the concentration of hydrochlorothiazide with a dynamic range of 5×10?8–1.0×10?5 mol L?1 and detection limit of 8.0×10?9 mol L?1. Application of the suggested method was successfully applied to the determination of hydrochlorothiazide in pharmaceutical preparations and human serum samples, with high percentage of recovery, good accuracy and precision.  相似文献   

9.
Fluorescence spectra, absorption spectra, melting temperature, ionic strength effect, and viscosity experiments were described that characterize the interaction of eugenol with salmon sperm DNA in vitro. Eugenol was found to bind but weakly to DNA, with binding constants of 4.23×103, 3.62×103 and 2.47×103 L mol?1 at 18, 28 and 38 °C respectively. The Stern–Volmer plots at different temperatures suggested that the quenching type of fluorescence of eugenol by DNA was a static quenching. Both the relative viscosity and the melting temperature of DNA were increased by the addition of eugenol. The changes of ionic strength had no affect on the binding. In addition, the binding constant of eugenol with single stranded DNA (ssDNA) was larger than that of eugenol with double stranded DNA (dsDNA). These results revealed that the binding mode of eugenol to DNA was intercalative binding. The thermodynamic parameters ΔH, ΔG and ΔS were also obtained according to the Van't Hoff equations, which suggested that hydrogen bond or van der Waals force might play an important role in a binding of eugenol to DNA. Based on the theory of the Förster energy transference, the binding distance between DNA and eugenol was determined as 4.40 nm, indicating that the static fluorescence quenching of eugenol by DNA was also a non-radiation energy transfer process.  相似文献   

10.
Using high-intensity ultrasound, in situ generated α-amylase nanoparticles (NPs) were immobilized on polyethylene (PE) films. The α-amylase NP-coated PE films have been characterized by E-SEM, FTIR, DLS, XPS and RBS. The PE was reacted with HNO3 and NPs of the α-amylase were also deposited on the activated PE. The PE impregnated with α-amylase (4 μg per 1 mg PE) was used for hydrolyzing soluble potato starch to maltose. The immobilization improved the catalytic activity of α-amylase at all the reaction conditions studied. The kinetic parameters, Km (5 and 4 g L?1 for the regular and activated PE, respectively) and Vmax (5 × 10?7 mol ml?1 min?1, almost the same numbers were obtained for the regular and activated PEs) for the immobilized amylase were found to slightly favor the respective values obtained for the free enzyme (Km = 6.6 g L?1, Vmax = 3.7 × 10?7 mol ml?1 min?1). The enzyme remained bound to PE even after soaking the PE in a starch solution for 72 h and was still found to be weakly active.  相似文献   

11.
Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50 °C (7.9 × 10?3 M s?1), sonic power intensity of 2.6 × 103 W m?2 and dissipated energy of 130.4 J ml?1. Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra? were lower at 2.4 × 10?4, 1.3 × 10?4 and 3.5 × 10?4 M s?1, respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15 × 10?3 s?1 M?1 for Novozym 435–1.48 × 10?3 s?1 M?1 for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9 × 103 to 4.5 × 103 W m?2 resulted in an increased in acoustic pressure (Pa) from 3.7 × 108 to 5.7 × 108 N m?2 almost 2.4–3.7 times greater than the acoustic pressure (1.5 × 108 N m?2) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6 × 103–1.5 × 104 m s?2 was calculated i.e. approximately 984–1500 times greater than under the action of gravity.  相似文献   

12.
Time resolved spectroscopy was applied to a real time investigation of chemical reaction of quercetin (5.0 × 10? 5 mol L? 1) with various concentrations of sodium hydroxide (from 5.0 × 10? 3 to 1.0 mol L? 1). The UV–vis absorption spectra acquired first reveal that there was an intermediate product with an absorption band centered at 427 nm formed during the reaction. The rates of chemical changes for quercetin in basic medium are also first obtained by the present work. The transient spectral information obtained is valuable for understanding the molecular mechanism of the reaction between quercetin and sodium hydroxide.  相似文献   

13.
β-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA1 is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of β-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR2 and UV–Vis3 spectroscopic methods were used to analyze the binding modes of β-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that β-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the –NH groups, with overall binding constants of Kharmine–BSA=2.04×104 M?1, Ktryptoline–BSA=1.2×104 M?1, Kharmaline–BSA=5.04×103 M?1, Kharmane–BSA=1.41×103 M?1 and Kharmalol–BSA=1.01×103 M?1, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of α-helix from 64% (free protein) to 59% (BSA–harmane), 56% (BSA–harmaline and BSA–harmine), 55% (BSA–tryptoline), 54% (BSA–harmalol) and β-sheet from 15% (free protein) to 6–8% upon β-carboline alkaloids complexation, inducing a partial protein destabilization.  相似文献   

14.
A new spectroflurometric method for the determination of adenosine disodium triphosphate (ATP) is developed. Fluorometric interaction between ATP and enoxacin (ENX)–Eu3+ complex was studied using UV–vis and fluorescence spectroscopy. Weak luminescence spectra of Eu3+ were enhanced after complexation with ENX at 589 nm and 614 nm upon excitation at 395 nm due to energy transfer from the ligand to the lanthanide ion. It was observed that luminescence spectrum of Eu3+ was strongly enhanced further at 614 nm after incorporation of ATP into the ENX–Eu3+ complex. Under optimal conditions, the enhancement of luminescence at 614 nm was responded linearly with the concentration of ATP. The linearity was maintained in the range of 1.5×10?10–1.15×10?8 M (R=0.9973) with the limit of detection (3σ) of 4.71×10?11 M. The relative standard deviation (RSD) for 9 repeated measurements of 1×10?9  M ATP was 1.25%. Successful determinations of ATP in soil, milk, and a pharmaceutical formulation with the proposed method were demonstrated.  相似文献   

15.
The room-temperature phosphorescence behavior of erythrosine B (ER) and rose bengal (RB) in aerobic aqueous solution at pH 10 (10?4 M NaOH) is investigated. The samples were excited with sliced second harmonic pulses of a Q-switched Nd:glass laser. A gated photomultiplier tube was used for instantaneous fluorescence signal discrimination and a digital oscilloscope was used for signal recording. For phosphorescence lifetime measurement the oscilloscope response time was adjusted to appropriate time resolution and sensitivity by the ohmic input resistance. In the case of phosphorescence quantum yield determination the gated photomultiplier – oscilloscope arrangement was operated in integration mode using 10 MΩ input resistance. Phosphorescence quantum yield calibration was achieved with erythrosine B and rose bengal doped starch films of known quantum yields. The determined phosphorescence lifetimes (quantum yields) of ER and RB in 0.1 mM NaOH are τP=1.92±0.1 μs (?P=(1.5±0.3)×10?5) and 2.40±0.1 μs ((5.7±0.9)×10?5), respectively. The results are discussed in terms of triplet state deactivation by dissolved molecular oxygen.  相似文献   

16.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

17.
We have investigated the structural and optical properties of bulk GaTe crystal grown by vertical Bridgman method. Two photon absorption (TPA) properties of GaTe crystal have been investigated by the open aperture Z-scan technique under 1064 nm wavelength with 4 ns or 65 ps pulse durations. The TPA coefficients are greater in ns regime than that of ps regime. Upon increasing intensity of incident light from 5.02×107 W/cm2 to 1.07×108 W/cm2, the TPA coefficients increased from 3.47×10?6 cm/W to 8.53×10?6 cm/W for nanosecond excitation. Similarly, when intensity of incident light was increased from 6.81×108 W/cm2 to 9.94×108 W/cm2 the TPA coefficients increased from 3.53×10?7 cm/W to 6.83×10?7 cm/W for picosecond excitation. Measured TPA coefficient of GaTe crystal is larger than that of GaSe and GaS layered crystals.  相似文献   

18.
Compared to the fluorescence spectra of warfarin in pure ethanol and in the presence of the nonionic surfactant Tergitol 15-S-7 after cloud point extraction (CPE), it can be seen that the fluorescence emission peak underwent an obvious red shift and the fluorescence intensity of warfarin was significantly increased in the presence of Tergitol 15-S-7. In order to confirm Tergitol 15-S-7-induced supramolecular effects, the investigations on the fluorescence quantum yields of warfarin in the micellar medium and pure ethanol were performed. The experimental results showed that the supramolecular interactions between Tergitol 15-S-7 and the warfarin excimers played a key role for improving the warfarin fluorescence properties.Based on these facts, a simple fluorometric method combined with CPE for the determination of trace warfarin was developed for the first time. Under optimized experimental conditions, the linear concentration range for warfarin was 3.0×1.0?9–1.0×10?6 mol L?1 and the detection limit was 3.3×10?10 mol L?1. And, the proposed method was approved to be appropriate for monitoring warfarin in actual pharmaceutical formulations and biological fluid samples by recovery test, in comparison with other reported methods being satisfactory.  相似文献   

19.
Mixed electron hole and oxide ion conducting perovskite-type oxides, La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ (0  x  1.0), were prepared by solid state reaction. The phase stability and the oxygen permeation properties of the oxides were examined as a function of the content of Cr. La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ has a perovskite related tetragonal phase with x = 0.1 to 0.8. The total electrical conductivity of La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ increases with increasing x. The oxygen permeation flux across the La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ membranes at higher temperatures increases with x up to x = 04. The maximum oxygen permeation flux of 1.6 × 10? 7 mol? 1 cm? 2 at 1100 °C in a oxygen activity gradient of air/10? 2 Pa is observed in La0.8Sr0.2(Ga0.8Mg0.2)0.6Cr0.4O3 ? δ. This perovskite-type oxide is stable under an oxygen partial pressure of 7 × 10? 10 Pa at 1000 °C.  相似文献   

20.
A novel flow injection method for detection of l-proline was proposed in the presence of CdTe quantum dots (QDs). This method is based on the enhanced anodic electrochemiluminescence (ECL) emission of CdTe QDs l-proline in aqueous system. CdTe QDs were modified with thioglycolic acid to obtain stable water-soluble QDs and intensive anodic ECL emission in Na2CO3–NaHCO3 buffer solution at an indium tin oxide (ITO) electrode, which was used for the sensitive detection of ECL enhancement using our homemade flow cell. Under the optimal conditions, the ECL intensity was correlated linearly with the concentration of l-proline over the range of 1.0×10?8?1.0×10?4 g mL?1 (r=0.9996) and the detection limit was 5.0×10?9 g mL?1. The relative standard deviation was 1.12% for 6.0×10?5 g mL?1 l-proline (n=11). The possible mechanism was discussed. This method put forward a new efficient ECL methodology for enhancement-related determination of l-proline successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号