首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 759 毫秒
1.
采用软模板法制备了氮化钨-钨/掺氮有序介孔碳复合材料(WN-W/NOMC),作为一种高比表面积且价格低廉的阴极氧还原反应催化剂。通过适量添加尿素来改变复合材料中的氮含量,在掺氮量为7%(w/w)时,实验发现材料能够保持完整有序介孔结构,测试其比表面积高达835 m~2·g~(-1),透射电子显微镜(TEM)测试结果显示其催化颗粒均匀地分散在氮掺杂有序介孔碳载体上。在O_2饱和的0.1 mol·L~(-1 )KOH溶液中测试了材料的氧还原催化性能(ORR),显示其起始电位为0.87 V(vs RHE),极限电流密度为4.49 mA·cm~(-2),氧还原反应的转移电子数为3.4,接近于20%(w/w)商业Pt/C的3.8,说明该材料表现出近似4电子的氧还原反应途径。研究结果表明,WN-W/NOMC的催化性能虽然稍弱于商业铂碳(0.99 V,5.1 mA·cm~(-2)),但其具有远超铂碳的循环稳定性和耐甲醇毒化能力。  相似文献   

2.
以F127为模板剂,NiCl2为镍源,尿素为氮源,间苯二酚甲醛原位聚合树脂为碳源,分别采用均相法和两相法制备Ni-N-OMC-1,Ni-N-OMC-2纳米复合材料.X射线衍射(XRD)、激光拉曼以及透射电子显微镜(TEM)等测试结果表明,复合材料具有有序介孔结构,Ni以金属微粒形式嵌于碳骨架中,提高了有序介孔碳的石墨化程度.X射线光电子能谱测试(XPS)表明尿素热解后以4种形式存在:sp3杂化与C结合的N原子,吡啶N原子,sp2杂化与C结合的N原子以及quaternary-N原子.Ni-N的共改性改变了碳载体的理化性质,有利于Pt纳米粒子的负载与分散.均相法制备的Ni-N-OMC-1复合材料微波负载Pt后,氧还原极限电流密度为5.32mA·cm-2,氢氧化电化学活性面积高达138.53m2·g-1,电化学催化活性优于商业20%Pt/C材料(4.49mA·cm-2,96.98m2·g-1).  相似文献   

3.
首先利用硬模板法制备出介孔碳/石墨烯复合材料,然后向复合材料中引入具有赝电容活性的醌类分子进一步增大材料的电容性能。研究结果表明,负载30%(w/w)叔丁基氢醌的介孔碳/石墨烯复合材料具有最佳的电容性能,在电流密度为0.5 A·g-1时,比电容值为355 F·g-1;当电流密度高达30 A·g-1时,其比电容值高达226 F·g-1,比电容保持率为64%,表现出良好的速率特性。  相似文献   

4.
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

5.
本工作采用水热法结合银镜反应制备出一系列不同Ag负载量(2.2%、4.0%、6.4%,w/w)改性的3D纳米网状结构Ag@TiO2薄膜电极。利用电感耦合等离子体技术(ICP)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线能谱(EDX)等表征手段测试所合成材料的形貌及成分,实验结果表明Ag纳米颗粒可以成功沉积在TiO2纳米线表面。电化学测试数据则表明,4.0%(w/w)负载量的Ag@TiO2相比于未改性和其他负载量的TiO2纳米线具有更好的倍率性能和更稳定的可逆容量。在50,100,200,400,800和1 200 mA·g-1的电流密度条件下,该改性电极的放电容量可分别达到261.4,253.7,239.5,216.5,193.1和185.1 mAh·g-1,在200 mA·g-1下循环80次后容量保持率仍能达到99.8%。  相似文献   

6.
通过简单的钴铁前躯体热分解法制备了系列一维Co1-xFexOy(0≤x≤1)多孔纳米材料,并在1 mol·L-1 KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co1-xFexOy具有最优的析氧催化性能。在10 mA·cm-2电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec-1,并表现出优异的析氧稳定性能。廉价、高效的Co1-xFexOy多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

7.
以Ni (Ac)2·4H2O和生物质材料丝瓜络为原料,通过先浸渍后热解的方法制备了低成本的镍纳米颗粒/丝瓜络衍生氮掺杂多孔碳纳米复合材料(Ni/T-dNPCN)。研究复合材料对甲醇的电催化性能,并讨论热解温度对复合材料结构和性能的影响。结果表明,Ni/T-dNPCN修饰玻碳电极(GCE)在碱性条件下对甲醇氧化反应(MOR)具有良好的电催化活性。其中,800℃煅烧得到的Ni/T-dNPCN800/GCE对1 mol·L-1甲醇具有最低的起始电位(0.344 V (vs Ag/AgCl))、最高的催化电流密度(质量活性:1 902 mA·mgNi-1;比活性:1.61 mA·cm-2)和最快的动力学反应过程(Tafel斜率:50.23 mV·dec-1),其催化活性约为商业化Pt/C/GCE的3.92倍。且计时电流测试表明,Ni/T-dNPCN800/GCE具有良好的稳定性。  相似文献   

8.
制备了以十二烷基硫酸钠(SDS)为模板的介孔碳,并将介孔碳和单质硫采用熔融渗透法复合制得硫/介孔碳复合材料。SEM、TEM和BET结果显示介孔碳成直径约为500 nm的大小均一的球体,存在孔径为2 nm的微孔;单质硫充分填充在介孔碳的微孔中。以硫/介孔碳复合物作为锂硫电池正极材料时显示出高的电化学性能。初始放电容量高达1519 mAh·g-1,在200 mA·g-1的电流密度下充放电200个循环后依然能保持在835 mAh·g-1。硫/介孔碳复合材料的高倍率性能和优异的循环稳定性,源于介孔碳良好的导电性及其孔结构的固硫作用。  相似文献   

9.
采用原位溶剂热生长法设计合成了锌掺杂Co9S8纳米颗粒。各种表征技术和性能测试结果表明:锌掺杂Co9S8纳米颗粒的孔尺寸为18 nm,比表面积为23 m2·g-1;同时微量的锌掺杂显著增强了Co9S8的电催化析氢(HER)活性及电容器性能。在HER性能测试中,当电流密度为10 mA·cm-2时电位为-361 mV,电流密度最高可达38.26 mA·cm-2,且具有优异的循环稳定性。同时在电容器性能测试中具有较高的比电容,当电流密度为1 A·g-1时,质量比电容和面积比电容分别为235.48 F·g-1和812.4 mF·cm-2。  相似文献   

10.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为45.3 mV·dec-1,可以媲美商业RuO2催化剂。此外,Co1Fe1-P/NF催化剂在10 mA·cm-2的100 h计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

11.
采用离子交换法与热处理相结合的方法,以ZIF67为前驱体,硫代乙酰胺为硫源,制备出硫化钴/多孔碳(CoS/C)复合催化材料,并探讨了硫化时间对复合催化剂的形貌、结构及其氧还原(ORR)性能的影响。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附测定仪、X射线光电子能谱分析(XPS)、拉曼光谱仪(Raman)和旋转圆盘电极(RDE)技术表征催化剂的物理特征和电催化性能。研究结果显示,在碱性条件下该复合催化剂具有与20%(w/w)的商业Pt/C催化剂相媲美的ORR活性,其半波电位仅比Pt/C催化剂低31 mV。随着硫化时间的增加,硫化钴颗粒逐渐增大,催化剂中碳材料的无序程度出现先减小后增大的趋势。在硫化时间为10 min时,复合催化剂在0.1 mol·L-1KOH中表现出良好的电催化活性,且在ORR过程中复合催化剂的平均转移电子数可达到3.72,接近于4,说明氧气在该催化剂表面发生的是四电子转移过程。  相似文献   

12.
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials.  相似文献   

13.
以F127为模板剂,Ni Cl2为镍源,尿素为氮源,间苯二酚甲醛原位聚合树脂为碳源,分别采用均相法和两相法制备Ni-NOMC-1,Ni-N-OMC-2纳米复合材料。X射线衍射(XRD)、激光拉曼以及透射电子显微镜(TEM)等测试结果表明,复合材料具有有序介孔结构,Ni以金属微粒形式嵌于碳骨架中,提高了有序介孔碳的石墨化程度。X射线光电子能谱测试(XPS)表明尿素热解后以4种形式存在:sp3杂化与C结合的N原子,吡啶N原子,sp2杂化与C结合的N原子以及quaternary-N原子。Ni-N的共改性改变了碳载体的理化性质,有利于Pt纳米粒子的负载与分散。均相法制备的Ni-N-OMC-1复合材料微波负载Pt后,氧还原极限电流密度为5.32 m A·cm-2,氢氧化电化学活性面积高达138.53 m2·g-1,电化学催化活性优于商业20%Pt/C材料(4.49 m A·cm-2,96.98 m2·g-1)。  相似文献   

14.
Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio‐oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen‐doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and “real‐world” biomass‐derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass‐derived phenolic stream is achieved under conditions of low severity.  相似文献   

15.
本文中主要研究了原始溶液中Ni、Co质量比(wNi∶wCo)对Ni-Co-S-O复合材料催化剂结构及性能的影响。采用水热法在泡沫镍(NF)基底上制备出了三维分层花瓣状纳米结构的Ni-Co-S-O复合材料催化剂。当原始溶液中wNi∶wCo=1∶2时,所制备的Ni-Co-S-O/NF(1∶2)催化剂具有更大的电化学活性面积(ECSA),在碱性水电解析氧过程中具有最好的电催化性能。在1 mol·L-1KOH碱性溶液中,Ni-Co-S-O/NF(1∶2)仅需61和313 mV的过电位,可分别获得10和100 mA·cm-2的电流密度,并且其Tafel斜率为155 mV·dec-1。Ni-Co-S-O/NF(1∶2)催化剂在碱性条件下100 mA·cm-2的恒定高电流密度下运行24 h后仍能保持片状结构,表现出良好的稳定性。  相似文献   

16.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

17.
A new type of carbon-free electrode catalyst, Pt/mesoporous WO3 composite, has been prepared and its electrochemical activity for methanol oxidation has been investigated. The mesoporous tungsten trioxide support was synthesized by a replicating route and the mesoporous composties with Pt loaded were characterized by using X-ray diffraction (XRD), nitrogen sorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. Cyclic voltammetry (CV), line scan voltammetry (LSV) and chronoamperometry (CA) were adopted to characterize the electrochemical activities of the composites. The mesoporous WO3 showed high surface area, ordered pore structure, and nanosized wall thickness of about 6-7 nm. When a certain amount of Pt nanoparticles were dispersed in the pore structure of mesoporous WO3, the resultant mesostructured Pt/WO3 composites exhibit high electro-catalytic activity toward methanol oxidation. The overall electro-catalytic activities of 20 wt % Pt/WO3 composites are significantly higher than that of commercial 20 wt % Pt/C catalyst and are comparable to the 20 wt % PtRu/C catalyst in the potential region of 0.5-0.7 V. The enhanced electro-catalytic activity is attributed to be resulted from the assistant catalytic effect and the mesoporous structure of WO3 supports.  相似文献   

18.
在碳纸(CP)及涂覆了碳粉科琴黑(KB)或石墨烯纳米片(GNs)的碳纸上,原位电沉积了AuPt合金,制备成CP/AuPt、CP/KB/AuPt、CP/GNs/AuPt三种空气电极。对比研究发现,以石墨烯纳米片为载体的CP/GNs/AuPt空气电极上,AuPt合金载量高,颗粒分散均匀,粒径约为100 nm左右,Au和Pt的含量分别为78.84%(n/n)和21.16%(n/n)。在0.1 mol·L-1 KOH溶液中氧还原反应的起峰电势为0.93 V,催化活性和稳定性优于其他两种空气电极。分析认为,石墨烯纳米片具有高导电性、高比表面积以及较多的缺陷活性位点,有利于AuPt合金在其上均匀电沉积且沉积载量较高,同时GNs本身具有一定的催化活性,两者能够产生协同催化作用,提高了CP/GNs/AuPt电极的催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号