首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic transient responses of a simply-supported Timoshenko beam subjected to an impact force are investigated by two theoretical approaches – ray and normal mode methods. The mathematical methodology proposed in this study for the ray method enable us to construct the solution for the interior source problem and to extend to solve the complicated problem for the multi span of the Timoshenko beam. Numerical results based on these two approaches are compared. The comparison in this study indicates that the normal mode method is more computationally efficient than the ray method except for very short time after the impact. The long-time transient responses are easily calculated using the normal mode method. It is shown that the average long-time transient response converges to the corresponding static value. The Timoshenko beam theory is more accurate than the Bernoulli–Euler beam theory because it includes shear and rotary inertia. This study also provides the slender ratio for which the Bernoulli–Euler beam can be used for the transient-response analysis of the displacement. Moreover, the resonant frequencies obtained from finite element calculation based on the three-dimensional model are compared with the results calculated using the Timoshenko beam and Bernoulli–Euler beam theories. It is noted in this study that the resonant frequency can be accurately determined by the Timoshenko beam theory if the slender ratio is larger than 100, and by the Bernoulli–Euler beam theory if the slender ratio is larger than 400.  相似文献   

2.
The contributions of compressive load and support damping are included into the formulation of flexural wave motion in beams lying on elastic (Winkler) foundation. The beam is modeled by both Euler–Bernoulli’s and Timoshenko’s theories. First, dispersion analysis is performed, which reveals that, for a fixed wavenumber, phase velocity decreases as the intensity of the compressive force or the value of the support damping is increased. Secondly, the transverse displacement of a semi-infinite beam excited by a velocity step pulse at its finite end is examined in the transient regime by adopting Laplace transform approach. This latter study sustains the validity of the dispersion analysis outcomes and shows that compressive load and support damping cause an amplification and a diminution, respectively, of the displacement amplitudes at the various positions of the beam.  相似文献   

3.
Freundlich  Jan 《Meccanica》2021,56(8):1971-1988
Meccanica - The presented work concerns the kinematically excited transient vibrations of a cantilever beam with a mass element fixed to its free end. The Euler–Bernoulli beam theory and the...  相似文献   

4.
In this paper, a linear theory for the analysis of beams based on the micropolar continuum mechanics is developed. Power series expansions for the axial displacement and micro-rotation fields are assumed. The governing equations are derived by integrating the momentum and moment of momentum equations in the micropolar continuum theory. Body couples and couple stresses can be supported in this theory. After some simplifications, this theory can be reduced to the well-known Timoshenko and Euler–Bernoulli beam theories. The nature of flexural and longitudinal waves in the infinite length micropolar beam has been investigated. This theory predicts the existence of micro-rotational waves which are not present in any of the known beam theories based on the classical continuum mechanics. Also, the deformation of a cantilever beam with transverse concentrated tip loading has been studied. The pattern of deflection of the beam is similar to the classical beam theories, but couple stress and micro-rotation show an oscillatory behavior along the beam for various loadings.  相似文献   

5.
工程结构的随机特征问题研究及其在梁结构中的应用   总被引:4,自引:0,他引:4  
采用子结构模态综合和摄动随机有限元相结合求解工程结构的随机特征问题。为求出随机特征对的方差,借助于模态截断概念推出诸特征值与特征向量对随机变量的偏导数。以染结构为典型算法,定量研究了子结构动模态的选取个数与随机特征对的计算精度间关系,以梁的长细比首次确定使用Timoshenko梁和Euler-Bernoulli梁两模型求解梁类工程结构随机特征问题的适用范围。  相似文献   

6.
Nonlinear Dynamics - The problem of flexural wave propagation on a beam resting on a unilateral elastic substrate is addressed. The Euler–Bernoulli beam theory, which is valid for slender...  相似文献   

7.
This paper aims to analyze the axial and transverse dynamic response of a functionally graded nanobeam under a moving constant load. The governing equations are obtained using the Hamilton principle and nonlocal Euler–Bernoulli beam theory. The mechanical properties vary in the thickness direction. The simply supported boundary condition is assumed and using the Laplace transform, the exact solution for the transverse and axial dynamic response is presented. Some examples were used to analyze nonlocal parameters such as power law index of FG materials, aspect ratio and the velocity of a moving constant load and also their influence on axial and transverse dynamic and maximum deflections. By obtaining a good agreement between the presented natural frequencies in this study and previous works, the results of this study are validated.  相似文献   

8.
The resonant frequency of flexural vibrations for a double tapered atomic force microscope (AFM) cantilever has been investigated by using the Timoshenko beam theory. In this paper, the effects of various parameters on the dimensionless frequency of vibrations of the AFM cantilever have been studied. The differential quadrature method (DQM) is employed to solve the nonlinear differential equations of motion. The results show that the resonant frequency decreases when the Timoshenko beam parameter or the cantilever thickness increases, and high-order modes are more sensitive to it. The first frequency is sensitive only in the lower range of contact stiffness, but the higher-order modes are sensitive to the contact stiffness in a larger range. Increasing the tip height increases the sensitivity of the vibrational modes in a limited range of normal contact stiffness. Furthermore, with increasing the breadth taper ratio, the frequency increases. The DQM results are compared with the exact solution for a rectangular AFM cantilever.  相似文献   

9.
分别采用欧拉和铁木辛柯梁理论分析了均匀分布力偶作用下的两端固支等截面匀质细长 梁, 并通过ABAQUS有限元分析了一个实例, 验证了铁木辛柯梁理论分析的结果. 对比证明在 这种载荷及边界条件下即使细长梁, 也必须考虑剪切效应的影响.  相似文献   

10.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

11.
李俊  金咸定  何东明 《力学季刊》2002,23(3):380-385
建立了一种普遍的解析理论用于求解确定性载荷作用下Timoshenko薄壁梁的弯扭耦合动力响应。首先通过直接求解单对称均匀Timoshenko薄壁梁单元弯扭耦合振动的运动偏微分方程,给出了计算其自由振动的精确方法,并导出了Timoshenko弯扭耦合薄壁梁自由振动主模态的正交条件。然后利用简正模态法研究了确定性载荷作用下单对称Timoshenko薄壁梁的弯扭耦合动力响应,该弯扭耦合梁所受到的荷载可以是集中载荷或沿着梁长度分布的分布载荷。最后假定确定性载荷是谐波变化的,得到了各种激励下封闭形式的解,并对动力弯曲位移和扭转位移的数值结果进行了讨论。  相似文献   

12.
The transient analysis of viscoelastic helical rods subject to time-dependent loads are examined in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia and, shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. The viscoelastic constitutive equations are written in the Boltzmann–Volterra form. Ordinary differential equations in canonical form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. The solutions obtained are transformed to the real space using an appropriate numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.  相似文献   

13.
In this paper, the well-known Mohr analogy is applied to the computation of displacements and rotations of carbon nanotubes, and some simple formula is derived which allows the direct generalization of the Mohr theory to the nonlocal Euler–Bernoulli and Timoshenko beam theories. Finally, some examples show the effectiveness and simplicity of the proposed approach.  相似文献   

14.
Nonprismatic beam modeling is an important issue in structural engineering, not only for versatile applicability the tapered beams do have in engineering structures, but also for their unique potential to simulate different kinds of material or geometrical variations such as crack appearing or spreading of plasticity along the beam. In this paper, a new procedure is proposed to find the exact shape functions and stiffness matrices of nonprismatic beam elements for the Euler–Bernoulli and Timoshenko formulations. The variations dealt with here include both tapering and abrupt jumps in section parameters along the beam element. The proposed procedure has found a simple structure, due to two special approaches: The separation of rigid body motions, which do not store strain energy, from other strain states, which store strain energy, and finding strain interpolating functions rather than the shape functions which suffer complex representation. Strain interpolating functions involve low-order polynomials and can suitably track the variations along the beam element. The proposed procedure is implemented to model nonprismatic Euler–Bernoulli and Timoshenko beam elements, and is verified by different numerical examples.  相似文献   

15.
Formulas and numerical results are studied for the transient vibration and dynamic instability of a bimaterial magneto-elastic cantilever beam which is subjected to alternating magnetic field and thermal loading. Materials are assumed isotropic, and the physical properties are assumed to have unique values in each layer. The governing equation of motion is derived by the extended Hamilton's principle, in which the damping factor, the electromagnetic force, the electromagnetic torque, and the thermal load are considered. The solution of thermal effect is obtained by superposing certain fundamental linear elastic stress states which are compatible with the Euler–Bernoulli beam theory. The axial stresses results are found to be in good agreement with some known numerical solutions. Using Galerkin's method, the equation of motion is reduced to a time-dependent Mathieu equation. The numerical results of the regions of dynamic instability are determined by the incremental harmonic balance (IHB) method, and the transient vibratory behaviors are presented by the fourth-order Runge–Kutta method. The results show that the responses of the transient vibration and dynamic instability of the system are influenced by the magnetic field, the thickness ratio, the excitation frequency, but not by the temperature increase in this study.  相似文献   

16.
In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.  相似文献   

17.
This paper describes a novel nondestructive damage detection method that was developed to study the influence of a crack on the dynamic properties of a cantilever beam subjected to bending. Experimental measurements of transfer functions for the cracked cantilever beam revealed a change in the natural frequency with increasing crack length. A finite element model of a cracked element was created to compute the influence of severity and location of damage on the structural stiffness. The proposed model is based on the response of the cracked beam element under a static load. The change in beam deflection as a result of the crack is used to calculate the reduction in the global component stiffness. The reduction of the beam stiffness is then used to determine its dynamic response employing a modal analysis computational model. Euler–Bernoulli and Timoshenko beam theories are used to quantify the elastic stiffness matrix of a finite element. The transfer functions from both theories compare well with the experimental results. The experimental and computational natural frequencies decreased with increasing crack length. Furthermore the Euler–Bernoulli and Timoshenko beam theories resulted in approximately the same decrease in the natural frequency with increasing crack length as experimentally measured.  相似文献   

18.
复合材料叠层梁和金属梁的固有振动特性   总被引:3,自引:0,他引:3  
对根据三种梁理论得到的金属梁和复合材料叠层梁的固有振动特性进行了对比性的研究对常用的三种梁理论在弹性碰撞分析中的应用进行了分析和比较  相似文献   

19.
Boley's method is utilized in order to show that the elementary Bernoulli–Euler beam theory can be enhanced such that exact solutions of the plane-stress theory of linear elasticity are obtained for force loaded rectangular beams. An equivalent enhancement is derived for the elementary Timoshenko theory of beams. The enhancement terms act analogous to thermal loadings; they follow from the force loading of the rectangular beam in an explicit form. The resulting boundary value problem of fourth order can be efficiently solved by means of symbolic computer codes. As an illustrative example, a redundant beam is studied, which is simply supported at one end, and which is clamped at the other end. Outcomes for three alternative clamped end boundary conditions are compared.  相似文献   

20.
A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号