首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
As an extension of the results obtained in [1], two equivalent uniformly divergent systems of equations are constructed in thespeedograph plane, each of which is the analogue of Chaplygin's equation in the hodograph plane. Each of the systems reduces to a linear second-order equation, in one case for the particle function (the Lagrange coordinate) ψ, and in the other for the time t. These systems possess an infinite set of exact solutions. It is shown that a uniformly divergent system of first-order equations correspond to each of these, and, related to them, the simplest non-linear homogeneous second-order equation in the modified events plane (ψ, t) and the conservation law in the events plant (x, t). Clear relations are obtained between the velocities of the fronts of constant values of the newly constructed dependent variables and the velocity of sound. Examples are given which demonstrate the relation between the exact solutions with the uniformly divergent equations and the conservation laws of one-dimensional non-stationary gas dynamics and, simultaneously, enable one to compare the newly obtained results (the exact solutions, the equations and conservation laws, and the relations for the velocities of the front) with existing results, including those for plane steady flows. The so-called additional conservation laws, to which Godunov drew attention, are considered.  相似文献   

2.

This paper deals with discrete second order Sturm-Liouville problems in which the parameter that is part of the Sturm-Liouville difference equation also appears linearly in the boundary conditions. An appropriate Green's formula is developed for this problem, which leads to the fact that the eigenvalues are simple, and that they are real under appropriate restrictions. A boundary value problem can be expressed by a system of equations, and finding solutions to a boundary value problem is equivalent to finding the eigenvalues and eigenvectors of the coefficient matrix of a related linear system. Thus, the behavior of eigenvalues and eigenvectors is investigated using techniques in linear algebra, and a linear-algebraic proof is given that the eigenvalues are distinct under appropriate restrictions. The operator is extended to a self-adjoint operator and an expansion theorem is proved.  相似文献   

3.
The conservation laws for laminar axisymmetric jet flows with weak swirl are studied here. The multiplier approach is used to derive the conservation laws for the system of three boundary layer equations for the velocity components governing flow in laminar axisymmetric jet flows with weak swirl. Conservation laws for the system of two partial differential equations for the stream function are also derived.  相似文献   

4.
We consider a novel mechanical system consisting of two spherical bodies rolling over each other, which is a natural extension of the famous Chaplygin problem of rolling motion of a ball on a plane. In contrast to the previously explored non-holonomic systems, this one has a higher dimension and is considerably more complicated. One remarkable property of our system is the existence of “clandestine” linear in momenta first integrals. For a more trivial integrable system, their counterparts were discovered by Chaplygin. We have also found a few cases of integrability.  相似文献   

5.
6.
A method is proposed for computing the collision operator of a generalized Boltzmann kinetic equation with allowance for energy transfer from translational to vibrational or rotational degrees of freedom. The collision operator is computed using a projection method on a uniform velocity grid. The operator satisfies the mass, momentum, and energy conservation laws and vanishes for an equilibrium velocity distribution function. Approximate models are suggested that provide savings on the computation of rotational-translational relaxation. Numerical examples are presented.  相似文献   

7.
We study higher-order conservation laws of the nonlinearizable elliptic Poisson equation as elements of the characteristic cohomology of the associated exterior differential system. The theory of characteristic cohomology determines a normal form for differentiated conservation laws by realizing them as elements of the kernel of a linear differential operator. We show that the \mathbbS1{\mathbb{S}^1} -symmetry of the PDE leads to a normal form for the undifferentiated conservation laws. Zhiber and Shabat (in Sov Phys Dokl Akad 24(8):607–609, 1979) determine which potentials of nonlinearizable Poisson equations admit nontrivial Lie–B?cklund transformations. In the case that such transformations exist, they introduce a pseudo-differential operator that can be used to generate infinitely many such transformations. We obtain similar results using the theory of characteristic cohomology: we show that for higher-order conservation laws to exist, it is necessary that the potential satisfies a linear second-order ODE. In this case, at most two new conservation laws in normal form appear at each even prolongation. By using a recursion motivated by Killing fields, we show that, for the simplest class of potentials, this upper bound is attained. The recursion circumvents the use of pseudo-differential operators. We relate higher-order conservation laws to generalized symmetries of the exterior differential system by identifying their generating functions. This Noether correspondence provides the connection between conservation laws and the canonical Jacobi fields of Pinkall and Sterling.  相似文献   

8.
Consistent difference approximations to differential operators in vector and tensor analysis are constructed in curvilinear coordinates in a plane by applying the basis operator method. They are obtained as a transformation of basis approximations in a Cartesian coordinate system. For the continuum mechanics equations in Lagrangian variables, this approach yields theoretically justified differential-difference schemes whose conservation laws correspond to the continuous case.  相似文献   

9.
The minimum number of terms that are needed in a separable approximation for a Green's function reveals the intrinsic complexity of the solution space of the underlying differential equation. It also has implications for whether low‐rank structures exist in the linear system after numerical discretization. The Green's function for a coercive elliptic differential operator in divergence form was shown to be highly separable [2], and efficient numerical algorithms exploiting low‐rank structures of the discretized systems were developed. In this work, a new approach to study the approximate separability of the Green's function of the Helmholtz equation in the high‐frequency limit is developed. We show (1) lower bounds based on an explicit characterization of the correlation between two Green's functions and a tight dimension estimate for the best linear subspace to approximate a set of decorrelated Green's functions, (2) upper bounds based on constructing specific separable approximations, and (3) sharpness of these bounds for a few case studies of practical interest. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
An iterative formula for the Green polynomial is given using the vertex operator realization of the Hall-Littlewood function. Based on this, (1) a general combinatorial formula of the Green polynomial is given; (2) several compact formulas are given for Green's polynomials associated with upper partitions of length ≤3 and the diagonal lengths ≤3; (3) a Murnaghan-Nakayama type formula for the Green polynomial is obtained; and (4) an iterative formula is derived for the bitrace of the finite general linear group G and the Iwahori-Hecke algebra of type A on the permutation module of G by its Borel subgroup.  相似文献   

11.
One-dimensional transverse oscillations in a layer of a non-linear elastic medium are considered, when one of the boundaries is subjected to external actions, causing periodic changes in both tangential components of the velocity. In a mode close to resonance, the non-linear properties of the medium may lead to a slow change in the form of the oscillations as the number of the reflections from the layer boundaries increases. Differential equations describing this process were previously derived. The equations obtained are hyperbolic and the change in the solution may both keep the functions continuous and lead to the formation of jumps. In this paper a model of the evolution of the wave patterns is constructed as integral equations having the form of conservation laws, which determine the change in the functions describing the oscillations of the layer as “slow” time increases. The system of hyperbolic differential equations previously obtained follows from these conservation laws for continuous motions, in which one of the variables is slow time, for which one period of the actual time serves as an infinitesimal quantity, while the second variable is the real time. For the discontinuous solutions of the same integral equations, conditions on the discontinuity are obtained. An analogy is established between the solutions of the equations obtained and non-linear waves propagating in an unbounded uniform elastic medium with a certain chosen elastic potential. This analogy enable discontinuities which may be physically realised to be distinguished. The problem of steady oscillations of an elastic layer is discussed.  相似文献   

12.
A sequence of symplectic forms have been constructed, relative to each of which the Korteweg-de Vries equation and all its higher analogs are Hamiltonian. The well-known conservation laws serve as the Hamiltonians. An analogous system of forms has been constructed also for a family of equations solvable by use of the inverse scattering problem for the Dirac operator. The results are used in the investigation of the connection between various non-linear evolution equations.  相似文献   

13.
The behaviour of the solution of the boundary value problem for a pseudodifferential equation (PDE), Green's function of this problem, and also some of their local and global characteristics, during variation of the domain is investigated. Formulas are proposed that enable the solution of a broad class of PDE in a domain to be expressed in terms of the solution in the near domain. Local characteristics of the solution are expressed in terms of the local characteristics of the solution in the near domain. A double asymptotic form of Green's function for both arguments tending to the domain boundary occurs in the variation formula. The variation of this double asymptotic form as the domain varies is expressed in terms of this same asymptotic form. The system of variation formulas obtained is closed. It enables the PDE solution in the domain to be reduced to the solution of an ordinary differential equation in functional space. The local characteristics of the solution can also be found by this method without calculating the solution itself. If there is sufficient symmetry in the initial operator, then conservation laws in the Noether sense are obtained for its Green's function and its asymptotic form. The behaviour of the quantities under investigation is studied under inversion.

The investigation of variations of the solutions of problems for the variation of the domain occurs in the paper by Hadamard /1/, who studied the variation in conformal mapping and obtained a formula similar to (1.4). The formula for the variation of the solution of the boundary value problem for an elliptic differential equation is obtained in /2/. Variation formulas for the case of the operator of the problem about a crack and a circular domain are obtained in /3, 4/. The Irwin formula /5/ is obtained from formulas (1.4) and (1.21) by substitution.  相似文献   


14.
Two formulas are introduced to directly obtain new conservation laws for any system of partial differential equations from a known conservation law and admitted symmetries. The first formula maps any conservation law of a given system to the corresponding conservation law of the system obtained through a contact transformation. When the contact transformation is a symmetry of the given system, then the corresponding conservation law is a conservation law of the given system. The second formula checks a priori whether or not the action of a symmetry (continuous or discrete) on a conservation law can yield one or more new conservation laws of the given system. Several examples are considered, including the use of a discrete symmetry to obtain a new conservation law and the use of a continuous symmetry to generate two new conservation laws.  相似文献   

15.
A non-linear controlled dynamical system that describes the dynamics of a broad class of non-linear mechanical and electromechanical systems (in particular, electromechanical robot manipulators) is considered. It is proposed that the real parameter vector of a non-linear controlled dynamical system belongs to an assigned (admissible) constrained closed set and is assumed to be unknown. The programmed motion of the non-linear controlled dynamical system and the programmed control that produces it are assigned (constructed) by using an estimate, that is, the nominal value of the parameter vector of the non-linear controlled dynamical system, which differs from its actual value. A procedure for synthesizing stabilizing control laws with linear feedback with respect to the state that ensure stabilization of the programmed motions of the non-linear controlled dynamical system under parametric perturbations is proposed. A non-singular linear transformation of the coordinates of the state space that transforms the original non-linear controlled dynamical system in deviations (from the programmed motion and programmed control) into a certain non-linear controlled dynamical system of special form, which is convenient for analysing and synthesizing laws for controlling the motion of the system, is constructed. A certain non-linear controlled dynamical system of canonical form is derived in the original non-linear controlled dynamical system in deviations. The transformation of the coordinates of the state space constructed and the Lyapunov function methodology are used to synthesize stabilizing control laws with linear feedback with respect to the state, which ensure asymptotic stability as a whole of the equilibrium position of the non-linear controlled dynamical system of canonical form and dissipativity “in the large” of the non-linear controlled dynamical system of special form and of the original non-linear controlled dynamical system in deviations. In the control laws synthesized, the formulae for the elements of their matrices of the feedback loop gains do not depend on the real parameter vector of the non-linear controlled dynamical system, and they depend solely on the constants from certain estimates that hold for all of its possible values from an assigned set. Estimates of the region of dissipativity “in the large” of the non-linear controlled dynamical system of special form and the original non-linear controlled dynamical system in deviations closed by the stabilizing control laws synthesized are given, and estimates for their limit sets and regions of attraction are presented.  相似文献   

16.
The paper deals with the three‐dimensional Dirichlet boundary value problem (BVP) for a second‐order strongly elliptic self‐adjoint system of partial differential equations in the divergence form with variable coefficients and develops the integral potential method based on a localized parametrix. Using Green's representation formula and properties of the localized layer and volume potentials, we reduce the Dirichlet BVP to a system of localized boundary‐domain integral equations. The equivalence between the Dirichlet BVP and the corresponding localized boundary‐domain integral equation system is studied. We establish that the obtained localized boundary‐domain integral operator belongs to the Boutet de Monvel algebra. With the help of the Wiener–Hopf factorization method, we investigate corresponding Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev (Bessel potential) spaces. Copyright © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons, Ltd.  相似文献   

17.
The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333(1) (2007) 311–328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler–Lagrange equations for some variational functional. After studying Lie point and Lie–Bäcklund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.  相似文献   

18.
Consider a general variational problem of a functional whose domain of definition consists of integral manifolds of an exterior differential system. In particular, this induces classical variational problems with constraints. With the assumption of existence of enough admissable variations the Euler-Lagrange equations associated to this problem are obtained. By studying a spectral sequence associated to the infinite prolongation of them, we extend the classical notion of infinitesimal Noether symmetries to what we shall call the “higher order Noether symmetries,” and a higher order Noether's theorem identifying the higher order conservation laws and the higher order Noether symmetries is obtained. These in turn are isomorphic to the solution space of certain linear differential operator. From these we also get a systematic method of computing the higher order conservation laws of certain determined PDE systems.  相似文献   

19.
The Euler equations for inviscid incompressible fluid flow have a Hamiltonian structure in Eulerian coordinates, the Hamiltonian operator, though, depending on the vorticity. Conservation laws arise from two sources. One parameter symmetry groups, which are completely classified, yield the invariance of energy and linear and angular momenta. Degeneracies of the Hamiltonian operator lead in three dimensions to the total helicity invariant and in two dimensions to the area integrals reflecting the point-wise conservation of vorticity. It is conjectured that no further conservation laws exist, indicating that the Euler equations are not completely integrable, in particular, do not have soliton-like solutions.  相似文献   

20.
We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Kortewegde Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov-Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra A 1 (1) . We find new examples of integrable systems of equations on a square lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号