首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

2.
The red-emitting phosphor In2(MoO4)3:Eu3+ with cubic crystal structure was synthesized by a conventional solid-state reaction technique and its photoluminescence properties were investigated. The prepared phosphor can be efficiently excited by ultraviolet (395 nm) and blue (466 nm) light. The emission spectra of the phosphor manifest intensive red-emitting lines at 612 nm due to the electric dipole 5D07F2 transitions of Eu3+. The chromaticity coordinates of x=0.63, y=0.35 (λex=395 nm) and x=0.60, y=0.38 (λex=466 nm) are close to the standard of National Television Standard Committee values (NTSC) values. The concentration quenching of In2(MoO4)3:Eu3+ is 40 mol% and the concentration self-quenching mechanism under 466 nm excitation was the dd intereaction. As a result of the strong emission intensity and good excitation, the phosphor In2(MoO4)3:Eu3+ is regarded as a promising red-emitting conversion material for white LEDs.  相似文献   

3.
We report on the luminescence quenching mechanism of Eu-doped GaN powder phosphor produced with a low-cost, high yield rapid-ammonothermal method. We have studied as-synthesized and acid rinsed Eu-doped GaN powders with the Eu concentration of ~0.5 at.%. The Eu-doped GaN photoluminescence (PL) was investigated with 325 nm excitation wavelength at hydrostatic pressures up to 7.7 GPa in temperature range between 12 K and 300 K. The room temperature integrated Eu3+ ion PL intensity from acid rinsed material is a few times stronger than from the as-synthesized material. The temperature dependent PL studies revealed that the thermal quenching of the dominant Eu3+ ion transition (5D0  7F2) at 622 nm is stronger in the chemically modified phosphor indicating more efficient coupling between the Eu3+ ion and passivated GaN powder grains. Furthermore, it was found that thermal quenching of Eu3+ ion emission intensity can be completely suppressed in studied materials by applied pressure. This is due to stronger localization of bound exciton on Eu3+ ion trap induced by hydrostatic pressure. Furthermore, the effect of 2 MeV oxygen irradiation on the PL properties has been investigated for highly efficient Eu-doped GaN phosphor embedded in KBr–GaN:Eu3+ composite. Fairly good radiation damage resistance was obtained for 1.7 × 1012 to 5 × 1013 cm?2 oxygen fluence. Preliminary data indicate that Eu-doped GaN powder phosphor can be considered for devices in a radiation environment.  相似文献   

4.
A novel Sr2SiO4:Eu (1–5 mol %) superstructures (SS) were synthesized using bio-sacrificial A.V. gel assisted ultrasound method. Powder X-ray diffraction patterns confirmed the presence of both α and β phase formation. It was evident that the morphological growth was highly reliant on A.V. gel concentration, sonication time, pH and sonication power. The formation mechanisms for different hierarchical SS were proposed. From diffuse reflectance spectra, the energy band gap was estimated and found to be ∼4.70–5.11 eV. The photoluminescence emission spectra for the excitation at 392 nm, shows characteristic emission peaks at 593, 613, 654 and 702 nm which were attributed to 5D0  7F0, 7F1, 7F2 and 7F3 transitions of Eu3+ ions respectively. Conversely, when the samples were subjected to the heat treatment at 850 °C for 3 h under argon atmosphere, display an intense broad emission peak with two de-convoluted peaks at 490 and 550 nm due to 4f65d1→4f1 (8S7/2) transitions of Eu2+ ions. The concentration quenching phenomenon was discussed which attributes to energy transfer, electron–phonon coupling and ion–ion interaction. The Judd–Ofelt intensity parameters and other radiative properties were estimated by using emission spectra. The CIE chromaticity coordinate values of Sr2SiO4:Eu2+ and Eu3+ nanophosphors were located in green and red regions respectively. The calculated CCT and CRI values specify that the present phosphor can be fairly useful for both green and red components of white LED’s. Luminescence decay and quantum yield suggest the suitability of this phosphor as an efficient luminescent medium for light emitting diodes. Overall, the results elucidated a rapid, environmentally benign, cost-effective and convenient method for Sr2SiO4:Eu3+ synthesis and for the possible applications such as solid state lighting and display devices.  相似文献   

5.
A piece-shaped phosphor Ca2BO3Cl: Eu2+ was synthesized by solid-state reaction method. This phosphor exhibited wide absorption in ultra-violet and visible range, and bright yellow emission band centering at 570 nm. The concentration quenching mechanism was verified to be a dipole–dipole interaction, and its critical transfer distance was about 17 Å by both calculated crystal structural method and experimental spectral method. This phosphor has a good thermal stability with a quenching temperature (T1/2) of 200 °C. Yellow and white LEDs were fabricated with this phosphor and near UV chips, and the yellow LED has a high color purity of 97.0% and promising current tolerant property, while the white LED shows a luminous efficiency of 11.68 lm/W.  相似文献   

6.
A Eu3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating a Eu3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction for 30 min at 900 °C. The excitation peak wavelength of the resulting phosphor was 379 nm and the emission peak wavelengths were at 542 nm, attributed to the 5D47F5 transition of Tb3+, and at 613 mm, attributed to the 5D07F1 transition of Eu3+. The intensity ratio of the two peaks could be freely controlled by varying the Eu/Tb atomic ratio of the Eu3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from green to red. It was clarified that electron transfer from Tb3+ to Eu3+ is occurring.  相似文献   

7.
Novel blue/green NaSrPO4 phosphors co-doped with Eu2+ and Tb3+ were synthesized by a conventional solid-state reaction. Their luminescent properties were characterized by using powder X-ray diffraction, photoluminescence excitation and emission spectra, lifetime, and temperature dependent emission spectra, respectively. The NaSrPO4:Eu2+,Tb3+,Na+ phosphor showed an intense broad excitation band between 250 and 430 nm, which was in agreement with the near-UV chip (350–420 nm), and it exhibited two dominating emission bands at 445 and 545 nm, corresponding to the allowed 4f65d1→4f7(8S7/2) transition of Eu2+ ion and the 5D47F5 transition of Tb3+ ion, respectively. The emission intensity and lifetime of Eu2+ ion decreased with the increasing concentration of Tb3+ ion, which strongly indicated that an effective energy transfer occurred from Eu2+ to Tb3+ in NaSrPO4 host. The principle of the energy transfer should be the combined effect of the non-radiative resonant energy transfer and the phonon-assisted non-radiative process.  相似文献   

8.
Divalent europium-activated chlorosilicate Ca6Sr4(Si2O7)3Cl2:Eu2+ phosphors were synthesized by a conventional solid-state reaction under reductive atmosphere. These phosphors can be efficiently excited by UV–visible light from 320 to 420 nm, which matches that of a near UV-emitting InGaN chip. Under the 360 nm excitation, Ca6Sr3.97(Si2O7)3Cl2:0.03Eu2+ phosphor shows a strong and broad emission centering at 515 nm, which is attributed to the 5d→4f transition of Eu2+ ion. The mechanism of concentration quenching was determined to be the dipole–dipole interaction and the critical energy-transfer distance of Eu2+ was calculated as 3.31 nm. The CIE chromaticity coordinates of Ca6Sr3.96(Si2O7)3Cl2:0.03Eu2+ phosphor are (0.127, 0.770) according to the emission spectrum. It can be expected that Ca6Sr4(Si2O7)3Cl2:Eu2+ phosphor is a promising candidate as the green component for near-ultraviolet InGaN-based white LED.  相似文献   

9.
A novel red phosphor La2MgTiO6:xEu3+ was successfully synthesized by the conventional solid state method. Excited by ultraviolet (395 nm) and blue (465 nm) light, La2MgTiO6:xEu3+ exhibits intense red emission. Due to the lack of inversion symmetry at the doping sites, the dominant emission peak is from the transition 5D07F2. Non-radiative transitions were demonstrated to be from dipole–dipole interactions and the critical distance was estimated to be ~9.19 Å. When Eu3+ ions' concentration reaches 15%, the emission intensity is about three times higher than that of the conventional phosphor Y2O3:Eu3+. The Commission International de L'Eclairage chromaticity coordinate was calculated to be x=0.657 and y=0.343. All the results indicate that La2MgTiO6:xEu3+ has superior luminescence properties.  相似文献   

10.
Sr2+ doped BaAl2Si2O8:Eu2+ phosphor was synthesized by chemical co-precipitation method. With the increase of Sr2+ concentration, the phase structure of (Ba0.965 ? xSrxEu0.035)Al2Si2O8 changes from hexagonal phase to monoclinic phase owing to large activation energy in SrAl2Si2O8 system. (Ba0.965 ? xSrxEu0.035)Al2Si2O8 phosphor exhibits a broad blue band peaking at 425 nm due to the 4f65d–4f7(8S7/2) transition of Eu2+ ions. The emission intensity increases, accompanied by the blue shift of emission maximum from 459 to 417 nm with the Sr2+ doping concentration increasing. The optimal concentration of Sr2+ ion is 40%, and the phosphor shows high color stability in CIE chromaticity diagram. The result indicates that Sr2+ doped phosphor not only can enhance the relative intensity but also can adjust the chromaticity coordinate.  相似文献   

11.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

12.
α- and β-Ca2P2O7: Eu2+, Mn2+ phosphors were prepared by solid-state reaction. Phase transition from tetragonal (β-phase) to monoclinic (α-phase) is performed. A strong orange emission of Mn2+ is observed in both α-and β-Ca2P2O7: Eu2+, Mn2+ upon near ultraviolet (UV) excitation through energy transfer from Eu2+ to Mn2+. The transfer efficiencies for various Mn2+ concentrations are estimated based on lifetime measurements of the fluorescence of Eu2+ in the two phases. The photoluminescence excitation spectra of α-Ca2P2O7: Eu2+, Mn2+ can cover 400 nm of the near-UV range, denoting its potential use as a phosphor with intense orange component for white light emitting diodes (LEDs).  相似文献   

13.
In this research, zeolite-derived aluminosilicate phosphors were synthesized through the ion exchange route. Red light-emitting property of Eu3+-doped aluminosilicate phosphors were discussed from a view point of the Eu content, heat-treatment condition and the oxidation state of Eu ions. The crystalline phase of the host aluminosilicates could be successfully controlled as designed based on the published NaAlO2–SiO2 binary phase diagram. Orange-red emission peaks derived from the 5D07Fj (j=0, 1, 2, 3, 4) transition of Eu3+ were observed around 590–700 nm, and 4f65d→4f7 transition of Eu2+ was observed at around 400–500 nm. The relative intensity I(5D07F2) of the dominant emission peak at 612 nm increased consistently with the Eu content. The results of the XANES spectroscopy analysis revealed that Eu2+ ion in the 1400 °C as heat-treated host aluminosilicate were successfully converted to Eu3+ by the additional annealing at 1100 °C. The Eu contents and heat-treatment conditions were determined to exhibit the best performance as a red phosphor, which were 10 wt% and 1500 °C, respectively  相似文献   

14.
The new apatite–silicate phosphor doped with Eu ions in Ba10(PO4)4(SiO4)2 matrix was synthesized through solid-state reaction. It was found that the as-synthesized phosphor displayed apparent mixture of band and line emission peaks giving rise to pseudo white light. The narrow emission bands peaking at 410 nm can be assigned to the 4f65d→4f7(8S7/2) transition of Eu2+ ions, and the other band at 507 nm is ascribed to anomalous fluorescent emission. One group of line emission peaking at 595 nm and 613 m were due to the 5D07F1 and 5D07F2 transition of Eu3+ ions. The occurrence of photostimulated luminescence and discrete emission lines in violet (410 nm), green (507 nm) and red (595 nm and 613 nm) colors indicate that this material has potential application in fields of white-light-emitting.  相似文献   

15.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

16.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

17.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7 powders doped with different Eu3+ concentrations using microwave assisted sintering and conventional sintering. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 structure as YInGe2O7:Eu3+ powders were sintered at 1200 °C in microwave furnace for 1 h, and the raw material phase of Y2O3 was observed when Eu3+ concentration was below 30 mol%. Scanning electron microscopy showed microwave assisted sintering results in smaller particle size and more uniform grain size distribution. In the photoluminescent (PL) studies, the concentration quenching effect was observed under the excitation at 393 nm, but not under the excitation at CTS band. The 5D07F2 transition (620 nm), exhibits a non-exponential decay behavior as YInGe2O7:Eu3+ powders were sintered by microwave with the Eu3+ concentration higher than 50 mol%.  相似文献   

18.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

19.
Single crystal of strontium iodide doped with 1% europium (SrI2:1% Eu2+) was grown by Vertical Gradient Freeze technique. UV excited emission spectra were studied as a function of temperature. Results indicate the thermal quenching of Eu2+ emission starts from ~400 K with a thermal activation energy of 0.39 eV. Gamma and UV excited decay measurements indicate that the scintillation decay time of SrI2:Eu2+ is longer than the lifetime of Eu2+ luminescence center in the SrI2 host. The thermoluminescence glow curve revealed a highly concentrated charge carrier trap at 50 K. Elimination of this trap is expected to enhance the energy migration of charge carriers and result in faster scintillation decay.  相似文献   

20.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号