首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Y2O3 luminescent nanoparticles were synthesized via PVA-assisted sol-gel method and their structural and optical properties were investigated. Effects of rare earth (Er3+, Eu3+ and Tb3+) doping on luminescence properties of the produced nanophosphors have been investigated under NIR (800 nm) and UV (240–300 nm) excitation. Intense infrared to red and green emissions were observed and a weak blue upconverted luminescence was also detected. Moreover, it was observed that changing the doping ions, the color emitted by the samples could be modified and different combinations of UV excitation and doping produced effective white light emissions. The obtained results demonstrate that PVA-assisted sol-gel is an effective methodology for the synthesis of rare-earth doped Y2O3 nanophosphors.  相似文献   

2.
Y2O3: Eu3+ has been widely applied as red phosphors in the fields of displaying and illumination. Here, we report the enhanced luminescence intensity of Y2O3: Eu3+ by codoping Pr3+ ion. The Pr3+ and Eu3+ doped Y2O3 microsheets with high aspect ratio were synthesized by a simple route combining chemical precipitation and pyrolysis, which could emit intense red light centered at 610 nm under the 254 and 365 nm UV excitation. The fluorescence measurement indicated that the luminescence intensity of Y2O3: Eu3+, Pr3+ did not increase monotonously with increasing Pr3+ concentration. The highest improvement of the photoluminescence intensity of Y2O3:Eu3+ was realized in the sample doped with 2 mol% Pr3+, which was of 17.8% higher than the whole intensity of only Eu3+ doped Y2O3.The mechanism analysis based on SEM, XRD, fluorescence spectra, and simplified energy level diagram indicated that (1) energy transfer process between Pr3+ and Eu3+, (2) crystallinity, and (3) symmetry should respond for this nonmonotonous variation phenomenon by competition with each other. For energy transfer process between Pr3+ and Eu3+, it was suggested that the cross relaxation of 5D0 + 7F1(Eu3+)?3P0 + 3H6(Pr3+) and the efficient energy transfer from 3P0 state of Pr3+ to 5D1 energy level of Eu3+ lead to the improvement of the population of the 5D0 state of Eu3+ so that the 610 red emission of Eu3+ ion was accordingly enhanced.  相似文献   

3.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7 powders doped with different Eu3+ concentrations using microwave assisted sintering and conventional sintering. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 structure as YInGe2O7:Eu3+ powders were sintered at 1200 °C in microwave furnace for 1 h, and the raw material phase of Y2O3 was observed when Eu3+ concentration was below 30 mol%. Scanning electron microscopy showed microwave assisted sintering results in smaller particle size and more uniform grain size distribution. In the photoluminescent (PL) studies, the concentration quenching effect was observed under the excitation at 393 nm, but not under the excitation at CTS band. The 5D07F2 transition (620 nm), exhibits a non-exponential decay behavior as YInGe2O7:Eu3+ powders were sintered by microwave with the Eu3+ concentration higher than 50 mol%.  相似文献   

4.
Undoped and Eu3+ activated Ln3BWO9 (Ln=Y, La, Gd) were prepared by the Pechini method and characterized with X-ray diffraction (XRD) and ultraviolet (UV) spectroscopy. All the samples have the hexagonal phase after heat treatment in the range of 850–1000 °C. The Eu3+ doped samples emit high-purity red light with peak maximum at about 617 nm under excitation of UV light (~285 nm) at room temperature. When the doping concentration of Eu3+ is about 20–30%, luminescence intensity reaches the maximum. Luminescence decay curves indicate that Ln3BWO9:Eu3+ exhibits a fast decay time of about 0.5 ms. A possible luminescence mechanism has also been proposed. It is worth noting that both the absorption of host lattice and the charge transfer (CT) transition of Eu3+ are of great importance to the promising luminescent performance of Ln3BWO9:Eu3+.  相似文献   

5.
This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu3+ (1–5 mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) light and exhibited strong red emission around 613 nm, which was attributed to the Eu3+ (5D0  7F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu3+ ions, electron–phonon coupling and Eu3+–Eu3+ interaction. The Judd–Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes.  相似文献   

6.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

7.
A novel hydrothermal approach for the preparation of europium(III)-doped yttrium oxide (Y2O3:Eu3+) nanocrystals was reported. The as-synthesized Y2O3:Eu3+ nanocrystals with diameter of about 5 nm are highly uniform and dispersed in water. The Y2O3:Eu3+ nanocrystals were characterized by high-resolution transmission electron microscopy and fluorescence spectroscopy. Due to their well dispersity in water, low toxicity, and good photoluminescence, the Y2O3:Eu3+ nanocrystals can potentially be used in high-definition displays and fluorescence probe in bioimaging.  相似文献   

8.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

9.
The (GdxY1?x)2O3: Er3+, Yb3+ [x=0.0, 0.1, 0.5, 0.9, 1.0] phosphor samples with 0.5 mol% concentration of Er3+ and 3.0 mol% of Yb3+, have been prepared using combustion route. The effect of variation of composition on the morphology, crystallinity and photoluminescence characteristics of the material has been investigated. The samples were post-heated at a temperature 1200 °C, for 5 h. We find systematic color tunability from red to green with an increase of Gd2O3 content in Y2O3 lattice. Further, the post-heated samples show an enhancement of fluorescence intensity for more than fifteen times. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence measurement and Fourier transform infrared (FTIR) techniques in order to find out the structural changes in host lattice. An increase in crystallite size has been marked with increasing Gd content while FTIR analysis explains the reason of variation in the fluorescence of rare earth ions in different host matrices.  相似文献   

10.
The Sr2MgSi2O7:Eu2+,Dy3+ materials were prepared with a solid state reaction and their microscopic structure (at 295 K only) and luminescence were studied at selected temperatures between 150 and 295 K. Undisturbed Sr crystal planes were common in the TEM images of the undoped Sr2MgSi2O7 material, whereas with Eu2+ doping more disturbed planes were observed even in the nanometer scale. With Dy3+ co-doping, a large number of small lattice domains created by the discontinuities in the crystal structure was observed. The domains with different orientations seem to be centered around point defects. The decay curves of Sr2MgSi2O7:Eu2+,Dy3+ showed fast (ms scale) persistent luminescence. The intensity of persistent luminescence increased considerably between 200 and 250 K while remaining constant in the ranges of 150–200 and 250–295 K. The changes were used to study the depth of the traps. In general, Dy3+ co-doping was found to deepen the traps.  相似文献   

11.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

12.
Undoped and Eu3+-doped cubic yttria (Y2O3) nanophosphors of good crystallinity, with selective particle sizes ranging between 6 and 37 nm and showing narrow size distributions, have been synthesized by a complex-based precursor solution method. The systematic size tuning has been evidenced by transmission electron microscopy, X-ray diffraction, and Raman scattering measurements. Furthermore, size-modulated properties of Eu3+ ions have been correlated with the local structure of Eu3+ ion in different sized Y2O3:Eu3+ nanophosphors by means of steady-state and time-resolved site-selective laser spectroscopies. Time-resolved site-selective excitation measurements performed in the 7F0 → 5D0 peaks of the Eu3+ ions at C2 sites have allowed us to conclude that Eu3+ ions close to the nanocrystal surface experience a larger crystal field than those in the nanocrystal core. Under the site-selective excitation in the 7F0 → 5D0 peaks, energy transfer between the sites has also been observed.  相似文献   

13.
Single-phase broad-band red-emitting Ca3Si2O7:Eu2+ phosphors, with photoluminescence features that qualify them as candidates for white light-emitting diodes applications, were successfully synthesized via a modified solid-state reaction method that employed H3BO3 as a flux. The phosphors produced have an intense broad red emission band, with a peak at 603 nm, a full width at half maximum of 110 nm, and color coordinates of (0.550, 0.438). Concentration quenching occurred at 0.01 mol Eu2+. The discussion of the results shows that Eu2+ ions should be accommodated at the Ca-sites of the lattice, dipole–dipole interactions should predominantly govern the energy transfer mechanism among them, and the critical distance between them is ~31 Å.  相似文献   

14.
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700 °C for 2 h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283 nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260 nm, the emission spectra are dominated by the red 5D07F2 transition at 618 nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.  相似文献   

15.
The luminescent properties of phosphors are sensitive to the size of phosphor particles. The commercial Y2SiO5:Tb3+ phosphors usually show relatively larger particle size (5–10 μm) due to the irregular morphology of rare earth oxide precursor and thus degrade the luminescent properties. In this paper, we report the Y2SiO5:Tb3+ phosphors synthesized from the uniform Tb-doped Y2O3 precursor by a homogeneous precipitation method. Compared with the commercial phosphors, the obtained Y2SiO5:Tb3+ phosphors manifest the uniform morphology with much smaller particles distributing from 0.8 μm to 1.9 μm. Consequently, the cathodoluminescent intensity under low excitation voltage (1–5 kV) was increased, demonstrating a strong green emission with a dominant wavelength of 545 nm. Our results indicate an effective way to develop the high-quality phosphors for field emission display.  相似文献   

16.
A novel red phosphor La2MgTiO6:xEu3+ was successfully synthesized by the conventional solid state method. Excited by ultraviolet (395 nm) and blue (465 nm) light, La2MgTiO6:xEu3+ exhibits intense red emission. Due to the lack of inversion symmetry at the doping sites, the dominant emission peak is from the transition 5D07F2. Non-radiative transitions were demonstrated to be from dipole–dipole interactions and the critical distance was estimated to be ~9.19 Å. When Eu3+ ions' concentration reaches 15%, the emission intensity is about three times higher than that of the conventional phosphor Y2O3:Eu3+. The Commission International de L'Eclairage chromaticity coordinate was calculated to be x=0.657 and y=0.343. All the results indicate that La2MgTiO6:xEu3+ has superior luminescence properties.  相似文献   

17.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

18.
(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00 mg/L initial concentration, 1.00 g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta = 1.00:0.25 heat-treated at 550 °C for 3.0 h) added amount, 150 min ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.  相似文献   

19.
Two series of calcium gallate phosphors: Ca1?xEuxGa4O7 and Ca1?2xEuxNaxGa4O7 (x=0, 0.002, 0.01, 0.02, 0.03, 0.05) were synthesized by a modified Pechini method and their optical properties at 298 and 77 K were investigated. In undoped CaGa4O7 upon 255 nm excitation a bluish white emission (λmax=500 nm) followed by an afterglow of the same color lasting for 10–20 s was observed. Eu3+-doping quenched the host-related luminescence and the characteristic red emission of the dopant with maximum at 613 nm appeared. Its excitation spectrum consisted of a broad band assigned to ligand to metal, O2?→Eu3+, charge transfer absorption and narrow lines arising from intraconfigurational transitions within the 4f6 states of Eu3+ ion. The effects of Eu3+ concentration and Na+ co-doping on the luminescence properties and decay kinetics were studied. Low temperature emission spectra showed that Eu3+ ions are positioned in environments of different symmetries. Their relative populations changed with the activator content. Co-doping with Na+ ions led to a remarkable reduction of the number of Eu3+ sites as well as to noticeable improvement of the luminescence brightness though it did not affect the decay time of the emission. The quantum efficiencies of singly doped CaGa4O7:Eu3+ were very low (in the range of 1–3.7%). Na+ co-doping improved this parameter leading to the highest efficiency of 11% for CaGa4O7:3%Eu3+,3%Na+.  相似文献   

20.
《Current Applied Physics》2010,10(2):596-600
The spectroscopic and host phase properties of SrAl2O4:Eu2+, Dy3+ phosphors with a series of different initiating combustion temperature, urea concentration as a fuel and critical pH of precursor solution are investigated. The SrAl2O4:Eu2+, Dy3+ nanoparticle pigments were obtained by exothermic combustion process within less than 5 min. The sample that ignited at initiating combustion temperature of 600 °C exhibits highest intensity emission peak at 517 nm in which the SrAl2O4 host phase has the maximum fraction of monoclinic SrAl2O4 phase. The excitation spectra consist of 240 and 254 nm broad peaks. The experimental results show that the optimum ratio of urea is 2.5 times higher than theoretical quantities for best emission condition of SrAl2O4:Eu2+, Dy3+ phosphor particles. The critical pH was obtained about 5.2. The crystallite size of these pigments is about 40 nm before thermal treatment and 62 nm after thermal treatment, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号