首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel metal composite material based on zirconium dioxide decorated gold nanoparticles (ZrO2@AuNPs), copper (I) oxide at manganese (IV) oxide (Cu2O@MnO2) and immobilized choline oxidase (ChOx) onto a glassy carbon electrode (GCE) (ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE) has been developed for enhancing the electro-catalytic property, sensitivity and stability of the amperometric choline biosensor. The ChOx/Cu2O@MnO2-ZrO2@AuNPs/GCE displayed an excellent electrocatalytic response to the oxidation of the byproduct H2O2 from the choline catalyzed reaction, which exhibited a charge transfer rate constant (Ks) of 0.97 s−1, a diffusion coefficient value (D) of 4.50×10−6 cm2 s−1, an electroactive surface area (Ae) of 0.97 cm2 and a surface concentration (γ) of 0.54×10−8 mol cm−2. The modified electrode also provided a wide linear range of choline concentration from 0.5 to 1,000.0 μM with good sensitivity (97.4 μA cm−2 mM−1) and low detection limit (0.3 μM). The apparent Michaelis-Menten constant was found to be 0.08 mM with Imax of 0.67 μA. This choline biosensor presented high repeatability (%RSD=2.9, n=5), excellent reproducibility (%RSD=2.9, n=5), long time of use (n=28 with %I>50.0 %) and good selectivity without interfering effects from possible electroactive species such as ascorbic acid, aspirin, amoxicillin, caffeine, dopamine, glucose, sucrose and uric acid. This optimal method was successfully applied for choline measurement in prepared human blood samples which demonstrated accurate and excellent reliability in the recovery range from 96.7 to 102.0 %.  相似文献   

2.
《Electroanalysis》2017,29(12):2698-2707
A cholesterol biosensor based on cholesterol oxidase‐poly(diallyldimethylammonium chloride)‐carbon nanotubes‐nickel ferrite nanoparticles (ChOx‐PDDA‐CNTs‐NiFe2O4NPs) solution is easily fabricated by using a single dropping step on a glassy carbon electrode (GCE) surface. This technique is an alternative way to reduce complexity, cost and time to produce the biosensor. The uniformly dispersed materials on the electrode surface enhance the catalytic reaction of cholesterol oxidase and electron transfer from the oxidation of hydrogen peroxide in the system. The nickel ferrite nanoparticles were synthesized by co‐precipitation and calcination at various temperatures. These nanoparticles were then characterized using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and X‐ray diffraction (XRD). The synthesized material calcined at 700 °C was well defined and presented the octahedral metal stretching with cubic NiFe2O4NPs phase. In cyclic voltammetric study, the ChOx‐PDDA‐CNTs‐NiFe2O4NPs/GCE showed 0.43 s−1 charge transfer rate constant (K s), 7.79×10−6 cm2 s−1 diffusion coefficient value (D ), 0.13 mm2 electroactive surface area (A e) and 3.58×10−8 mol cm−2 surface concentration ( ). This modified electrode exhibits stability in term of percent relative standard deviation (%RSD=0.62 %, n=10), reproducibility (%RSD=0.81, n=10), high sensitivity (25.76 nA per mg L−1 cm−2), linearity from 1 to 5,000 mg L−1 (R2=0.998) with a low detection limit (0.50 mg L−1). Its Michaelis‐Menten constant (K m) was 0.14 mM with 0.92 μA maximum current (I max) and demonstrated good selectivity without the effects of electroactive species such as ascorbic acid, glucose and uric acid. The cholesterol biosensor was successfully applied to determine cholesterol levels in human blood samples, showing promise due to its simplicity and availability.  相似文献   

3.
A novel composite material of copper (I) oxide at manganese (IV) oxide (Cu2O@MnO2), was synthesized and applied for modification on the glassy carbon electrode (GCE) surface (Cu2O@MnO2/GCE) as a hydrogen peroxide (H2O2) sensor. The composite material was characterized regarding its structural and morphological properties, using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The Cu2O@MnO2/GCE showed an excellent electrocatalytic response to the oxidation of H2O2 which provided a 0.56 s?1 charge transfer rate constant (Ks), 1.65×10?5 cm2 s?1 diffusion coefficient value (D), 0.12 mm2 electroactive surface area (Ae) and 1.04×10?8 mol cm?2 surface concentration ( ). At the optimal condition, the constructed sensor exhibited a wide linear range from 0.5 μM to 20 mM with a low limit of detection (63 nM, (S/N=3) and a good sensitivity of 256.33 μA mM?1 cm?2. It also presented high stability (ΔIresponse±15 %, n=100), repeatability (1.25 %RSD, n=10) and reproducibility (3.55 %RSD, n=10). The results indicated that the synthesized Cu2O@MnO2 was successfully used as a new platform for H2O2 sensing.  相似文献   

4.
Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL−1 to 100 ng mL−1 and a low limit of detection of 0.037 pg mL−1. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins.  相似文献   

5.
In this paper, self-assembled Prussian blue nanocubic particles on nanoporous glassy carbon was developed. The morphology of the PBNP-modified porous glassy carbon was characterized by scanning electron microscopy. The PBNP-GCE-red film-modified electrode was used for the sensitive detection of hydrogen peroxide. The electrochemical behavior of the resulting sensor was investigated using cyclic voltammetry and chronoamperometry. The value of α, k cat, and D was calculated as 0.35, 1.7 × 105 cm3 mol?1 s?1, and 2.6 × 10?5 cm2 s?1, respectively. The calibration curve for hydrogen peroxide determination was linear over 0–600 μM with a detection limit (S/N = 3) of 0.51 μM.  相似文献   

6.
The electrochemical behavior of 5-amino-1,10-phenanthroline and tris[5-amino-1,10-phenanthroline]-iron(II) at carbon paste, glassy carbon, and platinum electrodes is reported. The iron complex undergoes electrochemically induced oxidative polymerization from acetonitrile solutions and the resulting polymers are very stable. Charge transport through the polymer films occurs with a charge transfer diffusion coefficient, Dct, equal to 3.1 × 10−8 cm2 s−1 corresponding to an electron self-exchange rate of 5.2×107M−1 s−1. The activation energy and the entropy change for the charge transfer diffusion process are (approximate values) 32.0 ± 0.12 kJ mol−1 and −24.7 ± 0.4 J K−1 mol−1, respectively.  相似文献   

7.
A highly sensitive amperometric immunosensor has been developed for the detection of carcinoembryonic antigen (CEA). It is based on (a) Prussian Blue nanoparticles coated with poly(diallyldimethylammonium chloride) (P-PB) and (b) double-layer gold nanocrystals. The sensor was obtained by first electrodepositing porous gold nanocrystals on the glassy carbon electrode (GCE), and then by modifying the electrode with the coated P-PB. Subsequently, colloidal gold nanoparticles (nano-Au) were adsorbed onto the GCE by electrostatic interactions between the negatively charged nano-Au and the positively charged P-PB to immobilize CEA antibodies. Finally, bovine serum albumin was employed to block possible remaining active sites and to prevent the non-specific adsorption on the nano-Au. This immunosensor was characterized by cyclic voltammetry and scanning electron microscopy. The working range was adjusted to two concentration ranges, viz. from 0.5 to 10 ng.mL?1, and from 10 to 120 ng.mL?1 of CEA, with a detection limit of 0.2 ng.mL?1 at three times the background noise.  相似文献   

8.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

9.
In this paper, a thiol graphene‐thiol chitosan‐gold nanoparticles (thGP‐thCTS‐AuNPs) nanocomposites film with porous structure was fabricated by electrochemically depositing on glassy carbon electrode (GCE), which exhibited good biocompatibility and improved conductivity, to construct immunosensor free label for detection of carcinoembryonic antigen (CEA). The electrochemical behavior of this immunosensor was investigated by cyclic voltammetry. Under the optimum conditions, the immunosensor revealed a good amperometric response to CEA in two linear ranges (0.3–8.0 ng mL?1 and 8.0–100 ng mL?1) with a detection limit of 0.03 ng mL?1. The results indicated that the immunosensor has the advantages of good selectivity, high sensitivity, and good stability for the determination of CEA.  相似文献   

10.
A disposable electrochemical immunosensor for on-site detection of aflatoxin B1(AFB1), one of the most toxic mycotoxins in agri-food products, was fabricated through a low-cost cut-printing method and then modified with zein/polypyrrole(PPy) electrospun nanofibers onto which anti-AFB1 monoclonal antibodies were immobilized covalently. Fabrication was possible with an innovative and simple approach to adsorb nanofibers onto the working electrode during electrospinning. Electrochemical impedance spectroscopy was employed as the principle of detection, and the data collected with a portable potentiostat were treated with information visualization techniques. The nanostructured immunosensor showed a high sensitivity for AFB1 with a linear detection range from 0.25 to 10 ng mL−1 and a theoretical limit of detection of 0.092 ng mL−1, which is adequate to detect AFB1 in food, according to regulatory agencies.  相似文献   

11.
《Electroanalysis》2017,29(10):2348-2357
This work describes a simple preparation of 1‐diazo‐2‐naphthol‐4‐sulfonic acid (1,2,4‐acid) and multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) for the simultaneous detection of Co(II) and Cu(II). MWCNTs, with their good conductivity and large surface area, were drop‐casted onto the surface of the GCE prior to the electrodeposition of 1,2,4‐acid, a metal chelating agent. Co(II) and Cu(II) were simultaneously measured by differential pulse anodic stripping voltammetry (DPASV) in a batch system. Under optimum conditions, the linear range of Co(II) was between 0.10 and 2.5 μg mL−1 with an LOD of 80 ng mL−1. Two linear ranges were obtained for Cu(II), 0.0050 to 0.030 μg mL−1 and 0.040 to 0.25 μg mL−1,with an LOD of 2.4 ng mL−1. The method offered a high operational stability for up to 52 measurements (RSD=3.4 % for Co(II) and 2.6 % for Cu(II)) and good reproducibility (RSD=1.2 % for Co(II) and 1.7 % for Cu(II)). In the simultaneous detection of Co(II) and Cu(II), there was no effect from common interferences found in wastewater. The method was successfully applied in real water samples with good recoveries (88.2±0.8 to 102.0±0.8 % for Co(II) and 96.5±0.4 to 103.8±0.9 % for Cu(II)) and the results were in good agreement with those obtained from inductively coupled plasma optical emission spectrometry (ICP‐OES) (P >0.05).  相似文献   

12.
A highly sensitive amperometric galactose biosensor was developed by encapsulating galactose oxidase within the graphene-doped sol-gel titania-Nafion composite film on platinized glassy carbon electrode. Due to the combined electrocatalytic activity of graphene and Pt NPs on the electrode towards hydrogen peroxide as well as the mesoporous nature of the titania-Nafion composite, the present galactose biosensor exhibited relatively fast response time under 2 s, high sensitivity of 40.6 mAM−1cm−2, and wide dynamic range over three orders of magnitude with a detection limit of 3.78×10−6 M (S/N=3). In addition, the biocompatible composite in the biosensor secures excellent long-term stability.  相似文献   

13.
Ultrasensitive detection of cancer biomarkers has attracted considerable attention recently in academic research and clinic diagnostics. Here, we use a hollowed-out carbon nanotube sponge (CNTSP) electrode to fabricate an immunosensor to realize the sensitive detection of carcinoembryonic antigen (CEA). Nitrogen-doped carbon quantum dots (N-CDs) are combined with antibody that can specially recognize CEA and used as the electrochemiluminescent (ECL) probes in this work. The hollowed-out and permeable CNTSP facilitates chemical species exchange on the surface of electrode, offering an enhanced ECL signal. The resulting ECL immunosensor enables the determination of CEA concentration to be in a wide linear range from 0.005 to 50 pg mL−1 with a detection limit of 1.4 fg mL−1. Furthermore, with good stability, acceptable precision and reproducibility, the proposed ECL assay strategy offers a wide application potential in clinical analysis.  相似文献   

14.
Glyceline, reline, or ethaline deep eutectic solvents and carbon black nanoparticles within a crosslinked chitosan film are investigated as glassy carbon electrode modifiers for the first time. The selected 5 mg mL−1 glyceline modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Simultaneous determination of acetaminophen and diclofenac by differential pulse adsorptive stripping voltammetry (DPAdSV) presented limits of detection of 2.6×10−8 and 5.2×10−8 mol L−1 for acetaminophen and diclofenac, respectively, in pharmaceutical and biological samples. The obtained results were compared with those obtained by HPLC at a confidence level of 95 %.  相似文献   

15.
Nano-montmorillonites belong to aluminosilicate clay minerals with innocuity, high specific surface area, ion exchange, and favorable adsorption property. Due to the excellent properties, montmorillonites can be used as labels for the electrochemical immunosensors. In this study, nano-montmorillonites were converted to sodium montmorillonites (Na-Mont) and further utilized for the immobilization of thionine (TH), horseradish peroxidase (HRP) and the secondary anti-zeranol antibody (Ab2). The modified particles, Na-Mont-TH-HRP-Ab2 were used as labels for immunosensors to detect zeranol. This protocol was used to prepare the immunosensor with the primary antibody (Ab1) immobilized onto the nanoporous gold films (NPG) modified glassy carbon electrode (GCE) surface. Within zeranol concentration range (0.01–12 ng mL−1), a linear calibration plot (Y = 0.4326 + 8.713 X, r = 0.9996) was obtained with a detection limit of 3 pg mL−1 under optimal conditions. The proposed immunosensor showed good reproducibility, selectivity, and stability. This new type of immunosensors with montmorillonites and NPG as labels may provide potential applications for the detection of zeranol.  相似文献   

16.
Xiaoqiang Liu 《Talanta》2009,77(4):1437-1443
Low picograms of the hormone 17β-estradiol were detected at an electrochemical immunosensor. This immunosensor features a gold nanoparticle|Protein G-(LC-SPDP)1-scaffold, to which a monoclonal anti-estradiol capture antibody was immobilised to facilitate a competitive immunoassay between sample 17β-estradiol and a horseradish peroxidase-labelled 17β-estradiol conjugate. Upon constructing this molecular architecture on a disposable gold electrode in a flow cell, amperometry was conducted to monitor the reduction current of benzoquinone produced from a catalytic reaction of horseradish peroxidase. This current was then quantitatively related to 17β-estradiol present in a sample. Calibration of immunosensors in blood serum samples spiked with 17β-estradiol yielded a linear response up to ∼1200 pg mL−1, a sensitivity of 0.61 μA/pg mL−1 and a detection limit of 6 pg mL−1. We attribute these favourable characteristics of the immunosensors to the gold nanoparticle|Protein G-(LC-SPDP) scaffold, where the gold nanoparticles provided a large electrochemically active surface area that permits immobilisation of an enhanced quantity of all components of the molecular architecture, while the Protein G-(LC-SPDP) component aided in not only reducing steric hindrance when Protein G binds to the capture antibody, but also providing an orientation-controlled immobilisation of the capture antibody. Coupled with amperometric detection in a flow system, the immunosensor exhibited excellent reproducibility.  相似文献   

17.
Rate coefficients have been determined for the gas‐phase reaction of the hydroxyl (OH) radical with the aromatic dihydroxy compounds 1,2‐dihydroxybenzene, 1,2‐dihydroxy‐3‐methylbenzene and 1,2‐dihydroxy‐4‐methylbenzene as well as the two benzoquinone derivatives 1,4‐benzoquinone and methyl‐1,4‐benzoquinone. The measurements were performed in a large‐volume photoreactor at (300 ± 5) K in 760 Torr of synthetic air using the relative kinetic technique. The rate coefficients obtained using isoprene, 1,3‐butadiene, and E‐2‐butene as reference hydrocarbons are kOH(1,2‐dihydroxybenzene) = (1.04 ± 0.21) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐3‐methylbenzene) = (2.05 ± 0.43) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐4‐methylbenzene) = (1.56 ± 0.33) × 10−10 cm3 s−1, kOH(1,4‐benzoquinone) = (4.6 ± 0.9) × 10−12 cm3 s−1, kOH(methyl‐1,4‐benzoquinone) = (2.35 ± 0.47) × 10−11 cm3 s−1. This study represents the first determination of OH radical reaction‐rate coefficients for these compounds. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 696–702, 2000  相似文献   

18.
An effective, stable enzymatic glucose biosensor was fabricated on a glassy carbon electrode (GCE) surface using simple multicomposite materials (MCM): a solution of prepared poly(diallyldimethylammonium chloride)‐capped gold nanoparticles‐nickel ferrite particles‐carbon nanotubes‐chitosan (PDDA‐AuNPs‐NiFe2O4‐CNTs‐CHIT), electropolymerization of poly(o‐phenylenediamine) (PoPD) and immobilization of glucose oxidase (GOx). Biocompatibility and synergy of the MCM enhanced the immobilization and the reaction of GOx and as well as the electron transfer from an oxidation reaction of hydrogen peroxide in the system. The NiFe2O4 was synthesized by co‐precipitation and calcined at 700 °C. Characterization was carried out by field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) which presented both tetrahedral and octahedral metal stretching with a cubic NiFe2O4 crystal phase. The GOx/PoPD/MCM/GCE yielded a 0.77 s?1 charge transfer rate constant (Ks), a 2.28×10?6 cm2 s?1 diffusion coefficient value (D), a 0.21 mm2 electroactive surface area (Ae) and a 1.93×10?8 mol cm?2 surface concentration ( ) as determined by cyclic voltammetry. The modified electrode showed a durable operation time (n=97, more than 50 % I), repeatability (%RSD=0.38, n=10), reproducibility (%RSD=1.60, n=10), high sensitivity (853.07 μA mM?1 cm?2), selectivity without effects of electroactive species (aspirin, uric acid, caffeine, cholesterol, ascorbic acid and dopamine) and two linear ranges from 0.5 to 10 μM (R2=0.998) and 10 to 15,000 μM (R2=0.991) with a low detection limit (0.35 μM, S/N=3). Its Michaelis‐Menten constant (Km) was calculated as 93.51 μM with 46.30 μA maximum current (Imax). This proposed simple method was successfully applied for glucose determination in human blood samples.  相似文献   

19.
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0×10−3 mol l−1 NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol l−1 phosphate buffer (pH 7.0) containing 0.1 mol l−1 NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0×10−3 mol l−1 NADH was 6.7×10–6 cm2 s−1.  相似文献   

20.
《Electroanalysis》2018,30(8):1781-1790
An useful electrochemical sensing approach was developed for epinephrine (EP) detection based on graphene quantum dots (GQDs) and laccase modified glassy carbon electrodes (GC). The miniature GC biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with carbon nanoparticles. This sensing arrangement utilized the catalytic oxidation of EP to epinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of the enzyme – laccase. With the optimized conditions, the analytical performance demonstrated a high degree of sensitivity −2.9 μA mM−1 cm−2, selectivity in a broad linear range (1–120×10−6 M) with detection limit of 83 nM. Moreover, the method was successfully applied for EP determination in labeled pharmacological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号