首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate algorithmic questions that arise in the statistical problem of computing lines or hyperplanes of maximum regression depth among a set of n points. We work primarily with a dual representation and find points of maximum undirected depth in an arrangement of lines or hyperplanes. An O(n d ) time and O(n d−1) space algorithm computes undirected depth of all points in d dimensions. Properties of undirected depth lead to an O(nlog 2 n) time and O(n) space algorithm for computing a point of maximum depth in two dimensions, which has been improved to an O(nlog n) time algorithm by Langerman and Steiger (Discrete Comput. Geom. 30(2):299–309, [2003]). Furthermore, we describe the structure of depth in the plane and higher dimensions, leading to various other geometric and algorithmic results. A preliminary version of this paper appeared in the proceedings of the 15th Annual ACM Symposium on Computational Geometry (1999) M. van Kreveld partially funded by the Netherlands Organization for Scientific Research (NWO) under FOCUS/BRICKS grant number 642.065.503. J.S.B. Mitchell’s research largely conducted while the author was a Fulbright Research Scholar at Tel Aviv University. The author is partially supported by NSF (CCR-9504192, CCR-9732220), Boeing, Bridgeport Machines, Sandia, Seagull Technology, and Sun Microsystems. M. Sharir supported by NSF Grants CCR-97-32101 and CCR-94-24398, by grants from the U.S.–Israeli Binational Science Foundation, the G.I.F., the German–Israeli Foundation for Scientific Research and Development, and the ESPRIT IV LTR project No. 21957 (CGAL), and by the Hermann Minkowski—MINERVA Center for Geometry at Tel Aviv University. J. Snoeyink supported in part by grants from NSERC, the Killam Foundation, and CIES while at the University of British Columbia.  相似文献   

2.
We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution, conditioned on the customer’s service requirement, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. The asymptotic formulas relate to, and extend, some results of Morrison (SIAM J. Appl. Math. 45:152–167, [1985]) and Flatto (Ann. Appl. Probab. 7:382–409, [1997]). This work was partly supported by NSF grant DMS 05-03745.  相似文献   

3.
Let r k (n) denote the number of ways n can be expressed as a sum of k squares. Recently, S. Cooper (Ramanujan J. 6:469–490, [2002]), conjectured a formula for r 9(t), t≡5 (mod 8), r 11(t), t≡7 (mod 8), where t is a square-free positive integer. In this note we observe that these conjectures follow from the works of Lomadze (Akad. Nauk Gruz. Tr. Tbil. Mat. Inst. Razmadze 17:281–314, [1949]; Acta Arith. 68(3):245–253, [1994]). Further we express r 9(t), r 11(t) in terms of certain special values of Dirichlet L-functions. Combining these two results we get expressions for these special values of Dirichlet L-functions involving Jacobi symbols.   相似文献   

4.
Improved algorithms for the multicut and multiflow problems in rooted trees   总被引:1,自引:1,他引:0  
A. Tamir 《TOP》2008,16(1):114-125
Costa et al. (Oper. Res. Lett. 31:21–27, 2003) presented a quadratic O(min (Kn,n 2)) greedy algorithm to solve the integer multicut and multiflow problems in a rooted tree. (n is the number of nodes of the tree, and K is the number of commodities). Their algorithm is a special case of the greedy type algorithm of Kolen (Location problems on trees and in the rectilinear plane. Ph.D. dissertation, 1982) to solve weighted covering and packing problems defined by general totally balanced (greedy) matrices. In this communication we improve the complexity bound in Costa et al. (Oper. Res. Lett. 31:21–27, 2003) and show that in the case of the integer multicut and multiflow problems in a rooted tree the greedy algorithm of Kolen can be implemented in subquadratic O(K+n+min (K,n)log n) time. The improvement is obtained by identifying additional properties of this model which lead to a subquadratic transformation to greedy form and using more sophisticated data structures.   相似文献   

5.
We determine shape-preserving regions and we describe a general setting to generate shape-preserving families for the 2-points Hermite subdivision scheme introduced by Merrien (Numer. Algorithms 2:187–200, [1992]). This general construction includes the shape-preserving families presented in Merrien and Sablonníere (Constr. Approx. 19:279–298, [2003]) and Pelosi and Sablonníere (C 1 GP Hermite Interpolants Generated by a Subdivision Scheme, Prépublication IRMAR 06–23, Rennes, [2006]). New special families are presented as particular examples. Nonstationary and nonuniform versions of such schemes, which produce smoother limits, are discussed.   相似文献   

6.
We present an optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P in three dimensions. Our algorithm runs in O(nlog n) time and requires O(nlog n) space, where n is the number of edges of P. The algorithm is based on the O(nlog n) algorithm of Hershberger and Suri for shortest paths in the plane (Hershberger, J., Suri, S. in SIAM J. Comput. 28(6):2215–2256, 1999), and similarly follows the continuous Dijkstra paradigm, which propagates a “wavefront” from s along P. This is effected by generalizing the concept of conforming subdivision of the free space introduced by Hershberger and Suri and by adapting it for the case of a convex polytope in ℝ3, allowing the algorithm to accomplish the propagation in discrete steps, between the “transparent” edges of the subdivision. The algorithm constructs a dynamic version of Mount’s data structure (Mount, D.M. in Discrete Comput. Geom. 2:153–174, 1987) that implicitly encodes the shortest paths from s to all other points of the surface. This structure allows us to answer single-source shortest-path queries, where the length of the path, as well as its combinatorial type, can be reported in O(log n) time; the actual path can be reported in additional O(k) time, where k is the number of polytope edges crossed by the path. The algorithm generalizes to the case of m source points to yield an implicit representation of the geodesic Voronoi diagram of m sites on the surface of P, in time O((n+m)log (n+m)), so that the site closest to a query point can be reported in time O(log (n+m)). Work on this paper was supported by NSF Grants CCR-00-98246 and CCF-05-14079, by a grant from the U.S.-Israeli Binational Science Foundation, by grant 155/05 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. The paper is based on the Ph.D. Thesis of the first author, supervised by the second author. A preliminary version has been presented in Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 30–39, 2006.  相似文献   

7.
In this paper we present algorithms to calculate the fast Fourier synthesis and its adjoint on the rotation group SO(3) for arbitrary sampling sets. They are based on the fast Fourier transform for nonequispaced nodes on the three-dimensional torus. Our algorithms evaluate the SO(3) Fourier synthesis and its adjoint, respectively, of B-bandlimited functions at M arbitrary input nodes in O(M+B4)\mathcal O(M+B^4) or even O(M + B3 log2 B)\mathcal O(M + B^3 \log^2 B) flops instead of O(MB3)\mathcal O(MB^3). Numerical results will be presented establishing the algorithm’s numerical stability and time requirements.  相似文献   

8.
We show that the leading coefficient of the Kazhdan–Lusztig polynomial P x,w (q) known as μ(x,w) is always either 0 or 1 when w is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in Billey and Warrington (J. Algebraic Combin. 13(2):111–136, [2001]) and Billey and Jones (Ann. Comb. [2008], to appear). In type A, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar’s algorithm (Deodhar in Geom. Dedicata 63(1):95–119, [1990]), we provide some combinatorial criteria to determine when μ(x,w)=1 for such permutations w. The author received support from NSF grants DMS-9983797 and DMS-0636297.  相似文献   

9.
Combinatorial Sublinear-Time Fourier Algorithms   总被引:1,自引:0,他引:1  
We study the problem of estimating the best k term Fourier representation for a given frequency sparse signal (i.e., vector) A of length Nk. More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of [^(A)]\hat{\mathbf{A}} , and estimate their coefficients, in polynomial(k,log N) time. Randomized sublinear-time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem (Gilbert et al. in ACM STOC, pp. 152–161, 2002; Proceedings of SPIE Wavelets XI, 2005). In this paper we develop the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method (Gilbert et al. in Proceedings of SPIE Wavelets XI, 2005). Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in (Iwen in Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA’08), 2008).  相似文献   

10.
Two special cases of the Minimum Committee Problem are studied, the Minimum Committee Problem of Finite Sets (MCFS) and the Minimum Committee Problem of a System of Linear Inequalities(MCLE). It is known that the first of these problems is NP-hard (see (Mazurov et al., Proc. Steklov Inst. Math., 1:67–101, 2002)). In this paper we show the NP-hardness of two integer optimization problems connected with it. In addition, we analyze the hardness of approximation to the MCFS problem. In particular, we show that, unless NPTIME(n O(loglogn )), for every ε>0 there are no approximation algorithms for this problem with approximation ratio (1–ε)ln (m–1), where m is the number of inclusions in the MCFS problem. To prove this bound we use the SET COVER problem, for which a similar result is known (Feige, J. ACM, 45:634–652, 1998). We also show that the Minimum Committee of Linear Inequalities System (MCLE) problem is NP-hard as well and consider an approximation algorithm for this problem.   相似文献   

11.
In compressed sensing, we seek to gain information about a vector x∈ℝ N from d N nonadaptive linear measurements. Candes, Donoho, Tao et al. (see, e.g., Candes, Proc. Intl. Congress Math., Madrid, 2006; Candes et al., Commun. Pure Appl. Math. 59:1207–1223, 2006; Donoho, IEEE Trans. Inf. Theory 52:1289–1306, 2006) proposed to seek a good approximation to x via 1 minimization. In this paper, we show that in the case of Gaussian measurements, 1 minimization recovers the signal well from inaccurate measurements, thus improving the result from Candes et al. (Commun. Pure Appl. Math. 59:1207–1223, 2006). We also show that this numerically friendly algorithm (see Candes et al., Commun. Pure Appl. Math. 59:1207–1223, 2006) with overwhelming probability recovers the signal with accuracy, comparable to the accuracy of the best k-term approximation in the Euclidean norm when kd/ln N.  相似文献   

12.
In this article we carry on the study of the fundamental category (Goubault and Raussen, Dihomotopy as a tool in state space analysis. In: Rajsbaum, S. (ed.) LATIN 2002: Theoretical Informatics. Lecture Notes in Computer Science, vol. 2286, Cancun, Mexico, pp. 16–37, Springer, Berlin Heidelberg New York, 2002; Goubault, Homology, Homotopy Appl., 5(2): 95–136, 2003) of a partially ordered topological space (Nachbin, Topology and Order, Van Nostrand, Princeton, 1965; Johnstone, Stone Spaces, Cambridge University Press, Cambridge, MA, 1982), as arising in e.g. concurrency theory (Fajstrup et al., Theor. Comp. Sci. 357: 241–278, 2006), initiated in (Fajstrup et al., APCS, 12(1): 81–108, 2004). The “algebra” of dipaths modulo dihomotopy (the fundamental category) of such a po-space is essentially finite in a number of situations. We give new definitions of the component category that are more tractable than the one of Fajstrup et al. (APCS, 12(1): 81–108, 2004), as well as give definitions of future and past component categories, related to the past and future models of Grandis (Theory Appl. Categ., 15(4): 95–146, 2005). The component category is defined as a category of fractions, but it can be shown to be equivalent to a quotient category, much easier to portray. A van Kampen theorem is known to be available on fundamental categories (Grandis, Cahiers Topologie Géom. Différentielle Catég., 44: 281–316, 2003; Goubault, Homology, Homotopy Appl., 5(2): 95–136, 2003), we show in this paper a similar theorem for component categories (conjectured in Fajstrup et al. (APCS, 12(1): 81–108, 2004). This proves useful for inductively computing the component category in some circumstances, for instance, in the case of simple PV mutual exclusion models (Goubault and Haucourt, A practical application of geometric semantics to static analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005 – Concurrency Theory: 16th International Conference, San Francisco, USA, August 23–26. Lecture Notes in Computer Science, vol. 3653, pp. 503–517, Springer, Berlin Heidelberg New York, 2005), corresponding to partially ordered subspaces of R n minus isothetic hyperrectangles. In this last case again, we conjecture (and give some hints) that component categories enjoy some nice adjunction relations directly with the fundamental category.   相似文献   

13.
We establish particular wavelet-based decompositions of Gaussian stationary processes in continuous time. These decompositions have a multiscale structure, independent Gaussian random variables in high-frequency terms, and the random coefficients of low-frequency terms approximating the Gaussian stationary process itself. They can also be viewed as extensions of the earlier wavelet-based decompositions of Zhang and Walter (IEEE Trans. Signal Process. 42(7):1737–1745, [1994]) for stationary processes, and Meyer et al. (J. Fourier Anal. Appl. 5(5):465–494, [1999]) for fractional Brownian motion. Several examples of Gaussian random processes are considered such as the processes with rational spectral densities. An application to simulation is presented where an associated Fast Wavelet Transform-like algorithm plays a key role. The second author was supported in part by the NSF grant DMS-0505628.  相似文献   

14.
Given a graph G=(V,E) and a weight function on the edges w:E→ℝ, we consider the polyhedron P(G,w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P(G,w). Based on this characterization, and using a construction developed in Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008), we show that, unless P=NP, there is no output polynomial-time algorithm to generate all the vertices of a 0/1-polyhedron. This strengthens the NP-hardness result of Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008) for non 0/1-polyhedra, and comes in contrast with the polynomiality of vertex enumeration for 0/1-polytopes (Bussiech and Lübbecke in Comput. Geom., Theory Appl. 11(2):103–109, 1998). As further applications, we show that it is NP-hard to check if a given integral polyhedron is 0/1, or if a given polyhedron is half-integral. Finally, we also show that it is NP-hard to approximate the maximum support of a vertex of a polyhedron in ℝ n within a factor of 12/n.  相似文献   

15.
We revisit one of the most fundamental classes of data structure problems in computational geometry: range searching. Matoušek (Discrete Comput. Geom. 10:157–182, 1993) gave a partition tree method for d-dimensional simplex range searching achieving O(n) space and O(n 1−1/d ) query time. Although this method is generally believed to be optimal, it is complicated and requires O(n 1+ε ) preprocessing time for any fixed ε>0. An earlier method by Matoušek (Discrete Comput. Geom. 8:315–334, 1992) requires O(nlogn) preprocessing time but O(n 1−1/d log O(1) n) query time. We give a new method that achieves simultaneously O(nlogn) preprocessing time, O(n) space, and O(n 1−1/d ) query time with high probability. Our method has several advantages:
•  It is conceptually simpler than Matoušek’s O(n 1−1/d )-time method. Our partition trees satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all layers, and disjointness of the children’s cells at each node).  相似文献   

16.
17.
We show that in dimensions four and higher, to insure a smooth interpolant, additional geometric constraints must be imposed on the generalized Clough–Tocher split introduced in Worsey and Farin (Constr. Approx. 3:99–110, [1987]).   相似文献   

18.
In the papers (Laudal in Contemporary Mathematics, vol. 391, [2005]; Geometry of time-spaces, Report No. 03, [2006/2007]), we introduced the notion of (non-commutative) phase algebras (spaces) Ph n (A), n=0,1,…,∞ associated to any associative algebra A (space), defined over a field k. The purpose of this paper is to study this construction in some more detail. This seems to give us a possible framework for the study of non-commutative partial differential equations. We refer to the paper (Laudal in Phase spaces and deformation theory, Report No. 09, [2006/2007]), for the applications to non-commutative deformation theory, Massey products and for the construction of the versal family of families of modules. See also (Laudal in Homology, Homotopy, Appl. 4:357–396, [2002]; Proceedings of NATO Advanced Research Workshop, Computational Commutative and Non-Commutative Algebraic Geometry, [2004]).   相似文献   

19.
We apply Megiddo's parametric searching technique to several geometric optimization problems and derive significantly improved solutions for them. We obtain, for any fixed ε>0, anO(n 1+ε) algorithm for computing the diameter of a point set in 3-space, anO(8/5+ε) algorithm for computing the width of such a set, and onO(n 8/5+ε) algorithm for computing the closest pair in a set ofn lines in space. All these algorithms are deterministic. Work by Bernard Chazelle was supported by NSF Grant CCR-90-02352. Work by Herbert Edelsbrunner was supported by NSF Grant CCR-89-21421. Work by Leonidas Guibas and Micha Sharir was supported by a grant from the U.S.-Israeli Binational Science Foundation. Work by Micha Sharir was also supported by ONR Grant N00014-90-J-1284, by NSF Grant CCR-89-01484, and by grants from the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.  相似文献   

20.
This paper is a survey on the Hyers–Ulam–Rassias stability of the following Cauchy–Jensen functional equation in C *-algebras:
The concept of Hyers–Ulam–Rassias stability originated from the Th.M. Rassias’ stability theorem (Rassias in Proc. Am. Math. Soc. 72:297–300, [1978]). This work was supported by the research fund of Hanyang University (HY-2007-S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号