首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
We present an O(min(Kn,n2)) algorithm to solve the maximum integral multiflow and minimum multicut problems in rooted trees, where K is the number of commodities and n is the number of vertices. These problems are NP-hard in undirected trees but polynomial in directed trees. In the algorithm we propose, we first use a greedy procedure to build the multiflow then we use duality properties to obtain the multicut and prove the optimality.  相似文献   

2.
The quickest path problem is related to the classical shortest path problem, but its objective function concerns the transmission time of a given amount of data throughout a path, which involves both cost and capacity. The K-quickest simple paths problem generalises the latter, by looking for a given number K of simple paths in non-decreasing order of transmission time. Two categories of algorithms are known for ranking simple paths according to the transmission time. One is the adaptation of deviation algorithms for ranking shortest simple paths (Pascoal et al. in Comput. Oper. Res. 32(3):509–520, 2005; Rosen et al. in Comput. Oper. Res. 18(6):571–584, 1991), and another is based on ranking shortest simple paths in a sequence of networks with fixed capacity lower bounds (Chen in Inf. Process. Lett. 50:89–92, 1994), and afterwards selecting the K quickest ones. After reviewing the quickest path and the K-quickest simple paths problems we describe a recent algorithm for ranking quickest simple paths (Pascoal et al. in Ann. Oper. Res. 147(1):5–21, 2006). This is a lazy version of Chen’s algorithm, able to interchange the calculation of new simple paths and the output of each k-quickest simple path. Finally, the described algorithm is computationally compared to its former version, as well as to deviation algorithms.   相似文献   

3.
We study additive representability of orders on multisets (of size k drawn from a set of size n) which satisfy the condition of independence of equal submultisets (IES) introduced by Sertel and Slinko (Ranking committees, words or multisets. Nota di Laboro 50.2002. Center of Operation Research and Economics. The Fundazione Eni Enrico Mattei, Milan, 2002, Econ. Theory 30(2):265–287, 2007). Here we take a geometric view of those orders, and relate them to certain combinatorial objects which we call discrete cones. Following Fishburn (J. Math. Psychol., 40:64–77, 1996) and Conder and Slinko (J. Math. Psychol., 48(6):425–431, 2004), we define functions f(n,k) and g(n,k) which measure the maximal possible deviation of an arbitrary order satisfying the IES and an arbitrary almost representable order satisfying the IES, respectively, from a representable order. We prove that g(n,k) = n − 1 whenever n ≥ 3 and (n, k) ≠ (5, 2). In the exceptional case, g(5,2) = 3. We also prove that g(n,k) ≤ f(n,k) ≤ n and establish that for small n and k the functions g(n,k) and f(n,k) coincide.   相似文献   

4.
Andrew Suk 《Order》2010,27(1):63-68
Let r(n) denote the largest integer such that every family C\mathcal{C} of n pairwise disjoint segments in the plane in general position has r(n) members whose order type can be represented by points. Pach and Tóth gave a construction that shows r(n) < n log8/log9 (Pach and Tóth 2009). They also stated that one can apply the Erdős–Szekeres theorem for convex sets in Pach and Tóth (Discrete Comput Geom 19:437–445, 1998) to obtain r(n) > log16 n. In this note, we will show that r(n) > cn 1/4 for some absolute constant c.  相似文献   

5.
We present an optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P in three dimensions. Our algorithm runs in O(nlog n) time and requires O(nlog n) space, where n is the number of edges of P. The algorithm is based on the O(nlog n) algorithm of Hershberger and Suri for shortest paths in the plane (Hershberger, J., Suri, S. in SIAM J. Comput. 28(6):2215–2256, 1999), and similarly follows the continuous Dijkstra paradigm, which propagates a “wavefront” from s along P. This is effected by generalizing the concept of conforming subdivision of the free space introduced by Hershberger and Suri and by adapting it for the case of a convex polytope in ℝ3, allowing the algorithm to accomplish the propagation in discrete steps, between the “transparent” edges of the subdivision. The algorithm constructs a dynamic version of Mount’s data structure (Mount, D.M. in Discrete Comput. Geom. 2:153–174, 1987) that implicitly encodes the shortest paths from s to all other points of the surface. This structure allows us to answer single-source shortest-path queries, where the length of the path, as well as its combinatorial type, can be reported in O(log n) time; the actual path can be reported in additional O(k) time, where k is the number of polytope edges crossed by the path. The algorithm generalizes to the case of m source points to yield an implicit representation of the geodesic Voronoi diagram of m sites on the surface of P, in time O((n+m)log (n+m)), so that the site closest to a query point can be reported in time O(log (n+m)). Work on this paper was supported by NSF Grants CCR-00-98246 and CCF-05-14079, by a grant from the U.S.-Israeli Binational Science Foundation, by grant 155/05 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. The paper is based on the Ph.D. Thesis of the first author, supervised by the second author. A preliminary version has been presented in Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 30–39, 2006.  相似文献   

6.
To analyze the limiting spectral distribution of some random block-matrices, Girko (Random Oper. Stoch. Equ. 8(2), 189–194, 2000) uses a system of canonical equations from (An Introduction to Statistical Analysis of Random Arrays. VSP, Utrecht, 1998). In this paper, we use the method of moments to give an integral form for the almost sure limiting spectral distribution of such matrices.  相似文献   

7.
The classical criterion of asymptotic stability of the zero solution of equations x′ = f(t, x) is that there exists a function V (t, x), a(∥x∥) ≤ V (t, x) ≤ b(∥x∥) for some a, bK such that [(V)\dot] \dot{V} (t, x) ≤ −c(∥x∥) for some cK. In this paper, we prove that if V(m + 1) \mathop {V}\limits^{(m + {1})} (t, x) is bounded on some set [tk − T, tk + T] × BH(tk → + as k → ∞), then the condition that [(V)\dot] \dot{V} (t, x) ≤ −c(∥x∥) can be weakened and replaced by that [(V)\dot] \dot{V} (t, x)  0 and  (−[(V)\dot] \dot{V} (tk, x)| + − [(V)\ddot] \ddot{V} (tk, x)| + ⋯ + − V(m) \mathop {V}\limits^{(m)} (tk, x)|) ≤ −c′(∥x∥) for some c′K. Moreover, the author also presents a corresponding instability criterion. [110]  相似文献   

8.
We present some exponential inequalities for positively associated unbounded random variables. By these inequalities, we obtain the rate of convergence n −1/2 β n log 3/2 n in which β n can be particularly taken as (log log n)1/σ with any σ>2 for the case of geometrically decreasing covariances, which is faster than the corresponding one n −1/2(log log n)1/2log 2 n obtained by Xing, Yang, and Liu in J. Inequal. Appl., doi: (2008) for the case mentioned above, and derive the convergence rate n −1/2 β n log 1/2 n for the above β n under the given covariance function, which improves the relevant one n −1/2(log log n)1/2log n obtained by Yang and Chen in Sci. China, Ser. A 49(1), 78–85 (2006) for associated uniformly bounded random variables. In addition, some moment inequalities are given to prove the main results, which extend and improve some known results.  相似文献   

9.
An essential cycle on a surface is a simple cycle that cannot be continuously deformed to a point or a single boundary. We describe algorithms to compute the shortest essential cycle in an orientable combinatorial surface in O(n 2log n) time, or in O(nlog n) time when both the genus and number of boundaries are fixed. Our results correct an error in a paper of Erickson and Har-Peled (Discrete Comput. Geom. 31(1):37–59, 2004).  相似文献   

10.
An algorithm is presented which constructs an optimal binary search tree for an ordered list of n items, and which requires subquadratic time if there is no long sublist of very low frequency items. For example, time = O(n1.6) if the frequency of each item is at least /n for some constant > 0. A second algorithm is presented which constructs an approximately optimal binary search tree. This algorithm has one parameter, and exhibits a trade-off between speed and accuracy. It is possible to choose the parameter such that time = O(n1.6) and error = o(1).  相似文献   

11.
In this paper we introduce the notion of a Borell-Brascamp-Lieb inequality for metric measure spaces (M,d,m) denoted by BBL(K,N) for two numbers K,N ∈ ℝ with N ≥ 1. In the first part we prove that BBL(K,N) holds true on metric measure spaces satisfying a curvature-dimension condition CD(K,N) developed and studied by Lott and Villani in (Ann Math 169:903–991, 2007) as well as by Sturm in (Acta Math 196(1):133–177, 2006). The aim of the second part is to show that BBL(K,N) is stable under convergence of metric measure spaces with respect to the L 2-transportation distance.  相似文献   

12.
We revisit one of the most fundamental classes of data structure problems in computational geometry: range searching. Matoušek (Discrete Comput. Geom. 10:157–182, 1993) gave a partition tree method for d-dimensional simplex range searching achieving O(n) space and O(n 1−1/d ) query time. Although this method is generally believed to be optimal, it is complicated and requires O(n 1+ε ) preprocessing time for any fixed ε>0. An earlier method by Matoušek (Discrete Comput. Geom. 8:315–334, 1992) requires O(nlogn) preprocessing time but O(n 1−1/d log O(1) n) query time. We give a new method that achieves simultaneously O(nlogn) preprocessing time, O(n) space, and O(n 1−1/d ) query time with high probability. Our method has several advantages:
•  It is conceptually simpler than Matoušek’s O(n 1−1/d )-time method. Our partition trees satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all layers, and disjointness of the children’s cells at each node).  相似文献   

13.
We investigate algorithmic questions that arise in the statistical problem of computing lines or hyperplanes of maximum regression depth among a set of n points. We work primarily with a dual representation and find points of maximum undirected depth in an arrangement of lines or hyperplanes. An O(n d ) time and O(n d−1) space algorithm computes undirected depth of all points in d dimensions. Properties of undirected depth lead to an O(nlog 2 n) time and O(n) space algorithm for computing a point of maximum depth in two dimensions, which has been improved to an O(nlog n) time algorithm by Langerman and Steiger (Discrete Comput. Geom. 30(2):299–309, [2003]). Furthermore, we describe the structure of depth in the plane and higher dimensions, leading to various other geometric and algorithmic results. A preliminary version of this paper appeared in the proceedings of the 15th Annual ACM Symposium on Computational Geometry (1999) M. van Kreveld partially funded by the Netherlands Organization for Scientific Research (NWO) under FOCUS/BRICKS grant number 642.065.503. J.S.B. Mitchell’s research largely conducted while the author was a Fulbright Research Scholar at Tel Aviv University. The author is partially supported by NSF (CCR-9504192, CCR-9732220), Boeing, Bridgeport Machines, Sandia, Seagull Technology, and Sun Microsystems. M. Sharir supported by NSF Grants CCR-97-32101 and CCR-94-24398, by grants from the U.S.–Israeli Binational Science Foundation, the G.I.F., the German–Israeli Foundation for Scientific Research and Development, and the ESPRIT IV LTR project No. 21957 (CGAL), and by the Hermann Minkowski—MINERVA Center for Geometry at Tel Aviv University. J. Snoeyink supported in part by grants from NSERC, the Killam Foundation, and CIES while at the University of British Columbia.  相似文献   

14.
We describe involutions, i.e. elements of order 2, in the groups T n (K) – of upper triangular matrices of dimension n (n?∈??), and T (K) – of upper triangular infinite matrices, where K is a field of characteristic different from 2. Using the obtained result, we give a formula for the number of all involutions in T n (K) in the case when K is a finite field.  相似文献   

15.
Let L be a non-abelian restricted Lie algebra over a field of characteristic p > 0 and let u(L) denote its restricted enveloping algebra. In Siciliano (Publ Math (Debr) 68:503–513, 2006) it was proved that if u(L) is Lie solvable then the Lie derived length of u(L) is at least ⌈log2(p + 1)⌉. In the present paper we characterize the restricted enveloping algebras whose Lie derived length coincides with this lower bound.  相似文献   

16.
If R is a smooth semi-local algebra of geometric type over an infinite field, we prove that the Milnor K-group K M n (R) surjects onto the higher Chow group CH n (R , n) for all n≥0. Our proof shows moreover that there is an algorithmic way to represent any admissible cycle in CH n (R , n) modulo equivalence as a linear combination of “symbolic elements” defined as graphs of units in R. As a byproduct we get a new and entirely geometric proof of results of Gabber, Kato and Rost, related to the Gersten resolution for the Milnor K-sheaf. Furthermore it is also shown that in the semi-local PID case we have, under some mild assumptions, an isomorphism. Some applications are also given. Oblatum 17-XII-1998 & 1-X-2001?Published online: 18 January 2002  相似文献   

17.
Let G=(V,E) be a graph with n vertices and e edges. The sum choice number of G is the smallest integer p such that there exist list sizes (f(v):vV) whose sum is p for which G has a proper coloring no matter which color lists of size f(v) are assigned to the vertices v. The sum choice number is bounded above by n+e. If the sum choice number of G equals n+e, then G is sum choice greedy. Complete graphs Kn are sum choice greedy as are trees. Based on a simple, but powerful, lemma we show that a graph each of whose blocks is sum choice greedy is also sum choice greedy. We also determine the sum choice number of K2,n, and we show that every tree on n vertices can be obtained from Kn by consecutively deleting single edges where all intermediate graphs are sc-greedy.  相似文献   

18.
In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(t log k) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2 k) approximation algorithm for this directed multicut problem. Ifk ? n, this represents an improvement over theO(log n log log n) approximation algorithm that is implied by the technique of Seymour.  相似文献   

19.
The aim of this paper is to extend the classical maximal convergence theory of Bernstein and Walsh for holomorphic functions in the complex plane to real analytic functions in ℝ N . In particular, we investigate the polynomial approximation behavior for functions F:L→ℂ, L={(Re z,Im z):zK}, of the structure F=g[`(h)]F=g\overline{h}, where g and h are holomorphic in a neighborhood of a compact set K⊂ℂ N . To this end the maximal convergence number ρ(S c ,f) for continuous functions f defined on a compact set S c ⊂ℂ N is connected to a maximal convergence number ρ(S r ,F) for continuous functions F defined on a compact set S r ⊂ℝ N . We prove that ρ(L,F)=min {ρ(K,h)),ρ(K,g)} for functions F=g[`(h)]F=g\overline{h} if K is either a closed Euclidean ball or a closed polydisc. Furthermore, we show that min {ρ(K,h)),ρ(K,g)}≤ρ(L,F) if K is regular in the sense of pluripotential theory and equality does not hold in general. Our results are based on the theory of the pluricomplex Green’s function with pole at infinity and Lundin’s formula for Siciak’s extremal function Φ. A properly chosen transformation of Joukowski type plays an important role.  相似文献   

20.
This is a summary of the author’s PhD thesis supervised by Marie- Christine Costa and Frédéric Roupin and defended on 20 November 2006 at the Conservatoire National des Arts et Métiers in Paris (France). The thesis is written in French and is available upon request from the author. This work deals with two well-known optimization problems from graph theory: the maximum integral multiflow and the minimum multicut problems. The main contributions of this thesis concern the polynomial-time solvability and the approximation of these two problems (and of some of their variants) in classical classes of graphs: bounded tree-width graphs, planar graphs and grids, digraphs, etc.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号