首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carboxylate stretching frequencies of two high-valent, di-μ-oxido bridged, manganese dimers has been studied with IR spectroscopy in three different oxidation states. Both complexes contain one monodentate carboxylate donor to each Mn ion, in one complex, the carboxylate is coordinated perpendicular to the Mn-(μ-O)(2)-Mn plane, and in the other complex, the carboxylate is coordinated in the Mn-(μ-O)(2)-Mn plane. For both complexes, the difference between the asymmetric and the symmetric carboxylate stretching frequencies decrease for both the Mn(2)(IV,IV) to Mn(2)(III,IV) transition and the Mn(2)(III,IV) to Mn(2)(III,III) transition, with only minor differences observed between the two arrangements of the carboxylate ligand versus the Mn-(μ-O)(2)-Mn plane. The IR spectra also show that both carboxylate ligands are affected for each one electron reduction, i.e., the stretching frequency of the carboxylate coordinated to the Mn ion that is not reduced also shifts. These results are discussed in relation to FTIR studies of changes in carboxylate stretching frequencies in a one electron oxidation step of the water oxidation complex in Photosystem II.  相似文献   

2.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex.  相似文献   

3.
Manganese(II) macrocyclic complexes are prepared with different macrocyclic ligands, containing cyclic skeleton bearing organic components which have different chromospheres like N, O and S donor atoms and stereochemistry. Thus, six macrocyclic ligands, were prepared and their capacity to retain the manganese(II) ion in solid as well as in aqueous solution was determined and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic spectral and cyclic voltammetric studies. The electronic spectrum of this system showed a dependence that may be consistent with the formation of stable complexes and coordination behaviour of the ions. ESR spectra of all the complexes are recorded in solid as well as solution, which show the oxidation state of the manganese(II). Spin Hamiltonian manganese(II), which can be defined as the magnetic field vector (H): H = gBeta(e)HS + D[S(2)(z) - 35/12] + E[S(2)(z) - S(2)(y)] + ASI + (1/6)a [S(4)(x) + S(4)(y) + S(4)(z) - 707/16] + (1/180)F[(35S(2)(z) - 475)/(2S(2)(z) + 3255/10)] Significant distortion of the manganese(II) ion in observed geometry is evident from the angle subtended by the different membered chelate rings and the angles spanned by trans donor atoms octahedral geometry. Cyclic voltammetric studies indicate that complexes with all ligands undergoes one electron oxidation from manganese(II) to manganese(III) followed by a further oxidation to manganese(IV) at a significantly more positive potential.  相似文献   

4.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

5.
Density functional theory is used to explore possible mechanisms that lead to water oxidation by a bimetallic manganese catalyst developed by McKenzie and co-workers. On the basis of our calculations we propose that the key active intermediate is a mixed valent Mn(III)(μ-O)Mn(IV)-O˙ oxyl radical species, the oxyl centre being the site of nucleophilic attack by water. The mixed-valent species is in equilibrium with an isomeric diamond-core Mn(IV)(μ-O)(2)Mn(IV) structure, which acts as reservoir for the active species. The chemistry appears to be unique to pentadentate ligands because these shift the position of the equilibrium between the Mn(III)(μ-O)Mn(IV)-O˙ and Mn(IV)(μ-O)(2)Mn(IV) isomers, such that significant concentrations of the former are present in solution.  相似文献   

6.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

7.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

8.
Corrole-manganese(V)-oxo intermediates were produced by laser flash photolysis of the corresponding corrole-manganese(IV) chlorate complexes, and the kinetics of their decay reactions in CH2Cl2 and their reactions with organic reductants were studied. The corrole ligands studied were 5,10,15-tris(pentafluorophenyl)corrole (H3TPFC), 5,10,15-triphenylcorrole (H3TPC), and 5,15-bis(pentafluorophenyl)-10-(p-methoxyphenyl)corrole (H3BPFMC). In self-decay reactions and in reactions with substrates, the order of reactivity of (Cor)Mn(V)(O) was TPC > BPFMC > TPFC, which is inverted from that expected based on the electron-demand of the ligands. The rates of reactions of (Cor)Mn(V)(O) were dependent on the concentration of the oxidant and other manganese species, with increasing concentrations of various manganese species resulting in decreasing rates of reactions, and the apparent rate constant for reaction of (TPFC)Mn(V)(O) with triphenylamine was found to display fractional order with respect to the manganese-oxo species. The kinetic results are consistent in part with a reaction model involving disproportionation of (Cor)Mn(V)(O) to give (Cor)Mn(IV) and (Cor)Mn(VI)(O) species, the latter of which is the active oxidant. Alternatively, the results are consistent with oxidation by (Cor)Mn(V)(O) which is reversibly sequestered in non-reactive complexes by various manganese species.  相似文献   

9.
A novel monomeric tetravalent manganese complex with the cross-bridged cyclam ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Me2EBC), [Mn(IV)(Me2EBC)(OH)2](PF6)2, was synthesized by oxidation of Mn(II)(Me2EBC)Cl2 with H2O2 in the presence of NH4PF6)in aqueous solution. The X-ray crystal structure determination of this manganese(IV) compound revealed that it contains two rare terminal hydroxo ligands. EPR studies in dry acetonitrile at 77 K show two broad resonances at g = 1.96 and 3.41, indicating that the manganese(IV) exists as a high-spin d3 species. Resonance Raman (rR) spectra of this manganese(IV) species reveal that the dihydroxy moiety, Mn(IV)(OH)2, is also the dominant species in aqueous solution (pH < 7). pH titration provides two pK(a) values, 6.86(4) and 10.0(1), associated with stepwise removal of the last two oxygen-bound protons from [Mn(IV)(Me2EBC)(OH)2](2+). The cyclic voltammetry of this manganese(IV) complex in dry acetonitrile at 298 K demonstrates two reversible redox processes at +0.756 and -0.696 V (versus SHE) for the Mn4+/Mn3+ and Mn3+/Mn2+ couples, respectively. This manganese(IV) complex is relatively stable in weak acidic aqueous solution but easily degrades in basic solution to manganese(III) derivatives with an 88 +/- 1% yield.  相似文献   

10.
Different metal complexes of the general form M(OH) n (H2O)6– n have been studied for manganese and iron. Oxidation states considered for manganese are Mn(III), Mn(IV) and Mn(V) and for iron Fe(II), Fe(III) and Fe(IV). Oxygen containing ligands are used throughout with varying numbers of hydroxyl and water ligands. Some metal-oxo and some charged complexes were also studied. Large Jahn-Teller distortions were found for the Mn(III) and Fe(IV) complexes. Consequences of these distortions are that water ligands have to be placed along the weak JT-axis and that five-coordination by a loss of one of these water ligands is quite competitive with six-coordination in particular for manganese. For Fe(II) and Fe(III) lower coordinations than six are preferred due to the presence of two repulsive e g electrons. For the metal-oxo complexes five-coordination is also preferred due to the strong trans effect from the oxo ligand. All complexes studied have high-spin ground states. An interesting effect is that the spin is much more delocalized on the ligands for the iron complexes than for the manganese complexes. This effect, which is chemically important for certain iron enzymes, is rationalized by the large number of 3d electrons on iron. For manganese with only five 3d electrons no spin delocalization is needed to obtain the proper high-spin states. Received: 4 February 1997 / Accepted: 24 February 1997  相似文献   

11.
Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(μ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.  相似文献   

12.
The products of oxidation of ethylenediaminetetraacetic acid by manganese dioxide have been used to synthesize crystals of [Cu(Edda)(Phen)] · 5H2O (Edda is ethylenediamine-N,N′-diacetate, and Phen is 1,10-phenanthroline). The X-ray diffraction analysis of the crystals shows that the N atoms of the Edda and Phen ligands lie in the equatorial plane around the Cu atom, and the O atoms of the Edda ligands are localized in more remote axial positions. The [Cu(Edda)(Phen)] complexes are grouped in pairs at a distance of 3.46 Å between the mean planes of the Phen ligands. Ten water molecules are united by hydrogen bonds into symmetric isolated clusters, and further they form a three-dimensional framework with the [Cu(Edda)(Phen)] complexes.  相似文献   

13.
Aiming at highly efficient molecular catalysts for water oxidation, a mononuclear ruthenium complex Ru(II)(hqc)(pic)(3) (1; H(2)hqc = 8-hydroxyquinoline-2-carboxylic acid and pic = 4-picoline) containing negatively charged carboxylate and phenolate donor groups has been designed and synthesized. As a comparison, two reference complexes, Ru(II)(pdc)(pic)(3) (2; H(2)pdc = 2,6-pyridine-dicarboxylic acid) and Ru(II)(tpy)(pic)(3) (3; tpy = 2,2':6',2"-terpyridine), have also been prepared. All three complexes are fully characterized by NMR, mass spectrometry (MS), and X-ray crystallography. Complex 1 showed a high efficiency toward catalytic water oxidation either driven by chemical oxidant (Ce(IV) in a pH 1 solution) with a initial turnover number of 0.32 s(-1), which is several orders of magnitude higher than that of related mononuclear ruthenium catalysts reported in the literature, or driven by visible light in a three-component system with [Ru(bpy)(3)](2+) types of photosensitizers. Electrospray ionization MS results revealed that at the Ru(III) state complex 1 undergoes ligand exchange of 4-picoline with water, forming the authentic water oxidation catalyst in situ. Density functional theory (DFT) was employed to explain how anionic ligands (hqc and pdc) facilitate the 4-picoline dissociation compared with a neutral ligand (tpy). Electrochemical measurements show that complex 1 has a much lower E(Ru(III)/Ru(II)) than that of reference complex 2 because of the introduction of a phenolate ligand. DFT was further used to study the influence of anionic ligands upon the redox properties of mononuclear aquaruthenium species, which are postulated to be involved in the catalysis cycle of water oxidation.  相似文献   

14.
A series of manganese(III) corroles were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous solvents. Up to three oxidations and one reduction were obtained for each complex depending on the solvents. The main compound discussed in this paper is the meso-substituted manganese corrole, (Mes 2PhCor)Mn, and the main points are how changes in axially coordinated anion and solvent will affect the redox potentials and UV-vis spectra of each electrogenerated species in oxidation states of Mn(III), Mn(IV), or Mn(II). The anions OAc (-), Cl (-), CN (-), and SCN (-) were found to form five-coordinate complexes with the neutral Mn(III) corrole while two OH (-) or F (-) anions were shown to bind axially in a stepwise addition to give the five- and six-coordinate complexes in nonaqueous media. In each case, complexation with one or two anionic axial ligands led to an easier oxidation and a harder reduction as compared to the uncomplexed four-coordinate species.  相似文献   

15.
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.  相似文献   

16.
The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.  相似文献   

17.
Capillary electrophoresis (CE) and electrospray ionisation (ESI) mass spectra of aqueous solutions of manganese(II) complexes of the monoanions of the pentadentate ligands N-methyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (mcbpen(-)) and N-benzyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (bcbpen(-)), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [Mn(II)(L)(H(2)O)](n)(n+), L = mcbpen(-) or bcbpen(-) with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert-butyl hydrogen peroxide (TBHP), (NH(4))(2)[Ce(NO(3))(6)], Ce(ClO(4))(4), oxone and [Ru(bipy)(3)](3+) to form metastable (t(?) = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)(3)](2+)-mediated photooxidization in the presence of an electron acceptor. TBHP oxidation of the complexes, in large excesses of the TBHP, is concurrent with an O(2) evolution with turnovers of up to 1.5 × 10(4) mol of O(2) per mol of [Mn] and calculated rate constants from two series of experiments of 0.039 and 0.026 mol[O(2)] s(-1) M(-2). A 1:1 reaction of TBHP with [Mn] is rate determining and the resultant species is proposed to be the mononuclear, catalytically competent, [Mn(IV)(O)(mcbpen)](+). At very close m/z values [Mn(III)(OH)(mcbpen)](+), [Mn(2)(III/IV)(O)(2)(mcbpen)(2)](+) and [Mn(IV)(2)(O)(2)(mcbpen)(2)](2+) are detected by ESI MS and CE when the concentration of TBHP is comparable to or lower than that of [Mn]. These are conditions that occur post catalysis and these species are derived from [Mn(IV)(O)(mcbpen)](+) through condensation reactions.  相似文献   

18.
A series of novel dinuclear tungsten(IV) oxo complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)bpy) ligands of the type [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6)](2) (R=NMe(2), tBu, Me, H, Cl) was prepared by hydrolysis of the tungsten(IV) trichloro complexes [Cp*W(R(2)bpy)Cl(3)]. Cyclic voltammetry measurements for the tungsten(IV) oxo compounds provided evidence for one reversible oxidation and two reversible reductions leading to the oxidation states W(V)W(IV), W(IV)W(III) and W(III)W(III). The corresponding complexes [(Cp*W(R(2)bpy)(mu-O))(2)](n+) [PF(6)](n) (n=0 for R=Me, tBu, and 1, 3 for both R=Me) could be isolated after chemical oxidation/reduction of the tungsten(IV) oxo complexes. The crystal structures of the complexes [(Cp*W(R(2)bpy)(mu-O))(2)][BPh(4)](2) (R=NMe(2), tBu) and [(Cp*W(Me(2)bpy)(mu-O))(2)](n+)[PF(6)](n) (n=0, 1, 2, 3) show a cis geometry with a puckered W(2)O(2) four-membered ring for all compounds except [(Cp*W(Me(2)bpy)(mu-O))(2)] which displays a trans geometry with a planar W(2)O(2) ring. Examining the interaction of these novel tungsten oxo complexes with protons, we were able to show that the W(IV)W(IV) complexes [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6) (-)](2) (R=NMe(2), tBu) undergo reversible protonation, while the W(III)W(III) complexes [(Cp*W(R(2)bpy)(mu-O))(2)] transfer two electrons forming the W(IV)W(IV) complex and molecular hydrogen.  相似文献   

19.
As bio‐inspired chemical model of the oxygen‐evolving complex (OEC) in photosystem II, a new tyrosine‐modified corrole ligand 3 and its high‐valent copper and manganese complexes 3a and 3b were synthesized and characterized. The copper complexes 1a and 2a of corrole 1 and 2 were also prepared for comparison. The emission property indicates that the emission of ligands 2 and 3 is located at 670 nm, but no emission is observed for their metal complexes due to its suppression by the metal center. The electrochemical study shows that 3a might dimerize at the first two reversible oxidations, a behavior which was not observed in the case of 1a and 2a . The corrolato manganese(IV) complex 3b shows one reversible reduction and one quasireversible oxidation at ?0.17 and 0.77 V vs. Ag/Ag+, respectively.  相似文献   

20.
Sung KM  Holm RH 《Inorganic chemistry》2001,40(18):4518-4525
Structurally characterized tungstoenzymes contain mononuclear active sites in which tungsten is coordinated by two pterin-dithiolene ligands and one or two additional ligands that have not been identified. In this and prior investigations (Sung, K.-M.; Holm, R. H. Inorg. Chem. 2000, 39, 1275; J. Am. Chem. Soc. 2001, 123, 1931), stable coordination units of bis(dithiolene)tungsten(IV,V,VI) complexes potentially related to enzyme sites have been sought by exploratory synthesis. In this work, additional members of the sets [WL(S2C2Me2)2](2-,-) and [WLL'(S2C2Me2)2](2-,-) have been prepared and structurally characterized. Tungsten(IV) complexes obtained by substitution are carbonyl displacement products of [W(CO)2(S2C2Me2)2] and include those with the groups W(IV)S (4), W(IV)(O2CPh) (5), and W(IV)(2-AdQ)(CO) (Q = S (6), Se (7); Ad = adamantyl). Those obtained by oxidation reactions contain the groups W(V)O (9), W(V)(QPh)2 (Q = S (10), Se (11)), W(VI)S(OPh) (12), and W(VI)O2 (14). The latter two complexes were obtained from W(IV) precursors using sulfur and oxygen atom transfer reactions, respectively. Complexes 4 and 9 are square pyramidal; 6, 7, 10, and 11 are distorted trigonal prismatic with cis ligands LL'; and 12 and 14 are distorted octahedral. Complexes 4, 10, and 11 support three-membered electron transfer series. Attempts to oxidize 4 to the W(V)S complex results in the formation of binuclear [W2(mu2-S)2(S2C2Me2)4](2-) having distorted octahedral coordination. The 21 known functional groups WL and WLL' in mononuclear bis(dithiolene) complexes prepared in this and prior investigations are tabulated. Of those with physiological-type ligands, it remains to be seen which (if any) of these ligation modes are displayed by enzyme sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号