首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
本文研究合成条件对脱乙酰壳多糖─羧甲基纤维素聚电解质复合物的组成、结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖─羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖─羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

2.
本文研究合成条件对脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成、结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

3.
本文研究合成条件对脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成。结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

4.
近年来,国内外对壳聚糖在生物医学领域的应用研究十分活跃。壳聚糖在低pH时带正电荷,在溶液中可与带负电荷的聚离子形成聚电解质复合物。壳聚糖基聚电解质复合物除了具有壳聚糖的生物相容性,还表现出良好的物理化学性质,在药物控制释放体系、蛋白质分离、生物酶以及细胞固定化等领域具有广泛应用。本文重点介绍壳聚糖与几种天然的或合成的聚阴离子形成的聚电解质复合物及其在生物医学领域的应用。  相似文献   

5.
药物渗透系数是考察复合物膜的药物释放性能的重要参数. 本文以溶解性不同的两种药物扑热息痛和5-氨基水杨酸(5-ASA)为模型药物研究了其在壳聚糖-纤维素硫酸钠聚电解质复合物膜中的渗透性能. 结果表明:壳聚糖-纤维素硫酸钠聚电解质复合物膜的渗透性能与其溶胀性能密切相关;复合物膜中壳聚糖和纤维素硫酸钠的配比、相对分子量和pH值对膜的渗透性能和溶胀性能影响显著,以扑热息痛作为模型药物研究了壳聚糖-纤维素硫酸钠聚电解质复合物膜在模拟胃肠液中对药物的渗透性能. 通过调整该复合物膜的配方,可以使该膜分别实现胃、小肠和结肠定位释药的目的.  相似文献   

6.
药物渗透系数是考察复合物膜的药物释放性能的重要参数.本文以溶解性不同的两种药物扑热息痛和5-氨基水杨酸(5-ASA)为模型药物研究了其在壳聚糖-纤维素硫酸钠聚电解质复合物膜中的渗透性能.结果表明:壳聚糖-纤维素硫酸钠聚电解质复合物膜的渗透性能与其溶胀性能密切相关;复合物膜中壳聚糖和纤维素硫酸钠的配比、相对分子量和pH值对膜的渗透性能和溶胀性能影响显著,以扑热息痛作为模型药物研究了壳聚糖-纤维素硫酸钠聚电解质复合物膜在模拟胃肠液中对药物的渗透性能.通过调整该复合物膜的配方,可以使该膜分别实现胃、小肠和结肠定位释药的目的.  相似文献   

7.
聚电解质复合物   总被引:20,自引:0,他引:20  
本文介绍了聚电解质复合物的研究及发展状况,包括聚电解质复合物的形成、结构以及影响形成聚电解质复合物的各种因素,还介绍了近年来以聚电解质复合物为材料 质的渗透汽化膜的应用和在生物医药方面的研究成果。  相似文献   

8.
海藻酸钙凝胶小球与丙烯腈的接枝共聚改性   总被引:1,自引:0,他引:1  
萧聪明  何月英  吴宏 《应用化学》2004,21(5):535-537
海藻酸钙水凝胶由天然多糖海藻酸钠与二价钙离子交联形成,具有良好的生物相容,性在药物控制释放等领域得到了广泛的应用。但海藻酸钙水凝胶在大气和电解质溶液中的稳定性较差,常采用与壳聚糖等聚电解质形成复合物的方法加以改善。我们曾利用化学法将醋酸乙烯酯接枝到海藻酸钙  相似文献   

9.
水溶性聚电解质—表面活性剂复合物的聚集行为   总被引:4,自引:1,他引:4  
聚电解质在溶液中与相反电荷的表面活性剂通过解电作用与疏水作用可形成聚电解质-表面活性剂复合物,依据反应条件生成的复事物可以是水溶性也可以是非水溶性的。水溶性的聚电解质-表面活性剂复合物由于有许多工业应用,因此近几十上来水溶性聚电解质-表面活性剂复合物的形成和结构已爱到人们的广泛重视。本文对水溶性聚电解质-表面活性剂复合物的聚集过程、聚集结构作了简要概述,此外对荧光光谱在这一领域的应用进行了重点介绍  相似文献   

10.
壳聚糖(CS)是自然界中唯一的聚阳离子碱性多糖,具有良好的组织相容性、生物可降解性、无毒、无刺激、pH响应性等优点,因而在药物控释领域的具有潜在的应用价值。将聚阳离子壳聚糖与聚阴离子甲基丙烯酰氧乙基磷酰胆碱-甲基丙烯酸二元共聚物(poly(MPC-co-MA),PMA30)进行静电复合,制备CS-PMA30聚离子水凝胶。以考马斯亮蓝为模型药物,对CS-PMA30水凝胶的控释性能进行研究。结果表明,该CS-PMA30体系是通过静电作用形成的物理交联水凝胶,具有pH响应性,有望在药物控释、组织工程等领域得到广泛应用。  相似文献   

11.
Nanosized particles with a radius of 16 ± 2 nm based on complexes and conjugates of highly active superoxide dismutase and catalase with polyelectrolyte block copolymer poly(ethyleneimine)-poly(ethylene glycol) and similar bienzyme systems were obtained. Mass spectrometry was used to confirm the crosslinking of enzyme and block copolymer molecules in the nanoparticles that were formed. A significant increase of SOD and catalase stability (up to four times) towards proteolytic degradation under chymotrypsin and trypsin action for 3 h at 37°C was revealed when enzyme-containing nanoparticles were used for experiments. Antioxidant enzymes-containing polyelectrolyte nanoparticles seem to be promising for BBB penetration and CNS drug delivery.  相似文献   

12.
To endow chitosan with solubility in the whole pH-range without loss of functionality of the amino groups, the cationic polysaccharide was exhaustively alkylated yielding N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (QCht). Each alkylated unit of QCht contained both quaternary amino group and secondary amino group. Recently we demonstrated that QCht forms with nucleic acids of soluble polyelectrolyte complexes stable at physiological conditions and capable of cell transfection in vitro. In the current work, the anionic counterpart of QCht was hydrolyzed copolymer of divinyl ether and maleic anhydride (DIVEMA) which is known to possess some anti-tumor and immune stimulating activity and use as a drug carrier in anti-tumor drug delivery systems. According to the potentiometry data and ζ-potential measurements, almost all carboxylic groups of DIVEMA were able to form ion pairs with QCht. In aqueous and water–salt solutions, formation of either soluble or insoluble complexes was controlled by pH, ionic strength, a ratio of the oppositely charged groups, and degree of polymerization of the chains following general rules revealed on studying polyelectrolyte complexes of polycarboxylic acids. These findings evidence plausible advantages of the complex formation as the non-covalent modification that imparts to both polyelectrolytes of the ability for reversible soluble–insoluble transformation under enzyme-friendly conditions.  相似文献   

13.
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.  相似文献   

14.
Copolymer of divinyl ether and maleic anhydride (DIVEMA) is known to possess some anti-tumor and immune-stimulating activity and use as a drug carrier in anti-tumor drug delivery systems. Samples of DIVEMA of different degrees of polymerization were synthesized and characterized. Interaction of the hydrolyzed water-soluble DIVEMA polyanions with poly(N-ethyl-4-vinylpyridinium) cations (PEVP) has been studied. According to the potentiometry data, almost all carboxylic groups of the polyanions were able to form ion pairs with PEVP. In aqueous and water-salt solutions, formation of either soluble or insoluble polyelectrolyte complexes occurred depending on pH, ratio of the oppositely charged groups, and degree of polymerization of PEVP and/or DIVEMA. The phase separations followed general rules revealed by studying mixtures of PEVP and polycarboxylic acids. However in the case of DIVEMA, a significant broadening of the region for insoluble complexes at the expense of the region of soluble complexes was established. The data obtained demonstrate plausible advantages of the complex formation as the non-covalent modification of the polymeric carrier that endow DIVEMA with the ability for reversible soluble-insoluble transformation, in particular at physiological pH and ionic strength.  相似文献   

15.
Phenylboronic acids are known to form covalent complexes with polyol compounds such as glucose. A novel polyelectrolyte, containing phenylboronic acid as a glucose-sensitive moiety, has been synthesized and used for the fabrication of glucose-sensitive hollow polyelectrolyte capsules using the layer-by-layer technique. The response to glucose was observed as a rather fast dissolution of the capsules when brought into contact with a glucose-containing medium. These polyelectrolyte capsules are the first polyelectrolyte capsules able to respond to a stimulus that can be provided by the human body (i.e., an increase in glucose concentration). Therefore, the concept we present has promising applications in the biomedical field for the controlled delivery of insulin.  相似文献   

16.
Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them.  相似文献   

17.
Coordination complexes (including discrete coordination complexes and coordination polymers) have demonstrated excellent performance in drug delivery. This review outlines recent advances of discrete coordination complexes, bulk coordination polymers, and nanoscale/microscale coordination polymers in drug delivery. Specifically, rationale and mechanism of coordination complexes in drug delivery are summarized in this contribution. In this review, we discuss applications of these coordination species in drug delivery from perspectives in chemistry and pharmaceutical sciences, and an outlook of these coordination species of interest in drug delivery will also be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号