首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过傅里叶变换红外光谱(FTIR)、傅里叶变换拉曼(FT-Raman)和488 nm拉曼光谱,结合密度泛函理论(DFT)计算研究了2-氨基苯并噻唑(ABT)在晶态和溶剂中的二聚体结构,并解释了质子性溶剂中ABT二聚体与溶剂分子间的氢键作用.电子光谱实验揭示了ABT二聚体的光物理和光化学反应;紫外吸收和荧光发射光谱结果表明,溶剂、激发波长和pH值对ABT二聚件激发态衰变具有调控作用;含时密度泛函理论(TD-DFT)解释了ABT二聚体双荧光现象,提出了高激发态的质子转移机理.  相似文献   

2.
The possibility of ground and excited state proton transfer reaction across the five member intramolecular hydrogen bonded ring in 4-hydroxyacridine (4-HA) has been investigated spectroscopically and the experimental results have been correlated with quantum chemical calculations. The difference in the emissive behaviour of 4-HA in different types of solvents is due to the presence of different species in the excited state. In non-polar solvents, the species present is non-fluorescing in nature, whereas 4-HA molecule shows normal emission from intramolecularly hydrogen bonded closed conformer in polar aprotic solvents. In polar protic solvents like MeOH, EtOH, etc. (except water), a single broad emission band is attributed to the hydrogen bonded solvated form of 4-HA. However, in case of water, fluorescence from the tautomeric form of 4-HA is observed apart from emission from the solvated form. Emission from the tautomeric form may arise due to double proton transfer via a single water molecule bonded to 4-HA. Evaluation of the potential energy surfaces by quantum chemical calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT), however, points towards the possibility of proton transfer—both intrinsic intramolecular as well as water mediated in the first excited state of 4-HA.  相似文献   

3.
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.  相似文献   

4.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

5.
The photochromic mechanism of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3- pyrazine)-pyrazole-5-one has been investigated using the density functional theory(DFT). The solvent effect is simulated using the polarizable continuum model(PCM) of the self-consistent reaction field theory. According to the crystal structure of the title compound, an intramolecular proton transfer mechanism from enol to keto form was proposed to interpret its photochromism. Bader's atom-in-molecule(AIM) theory is used to investigate the nature of hydrogen bonds and ring structures. Time-dependent density functional theory(TDDFT) calculation results show that the photochromic process from enol to keto form is reasonable. The conformation and molecular orbital analysis of enol and keto forms explain why only intramolecular proton transfer is possible. The results from analyzing the energy and dipole moments of enol form, transition state and keto form in the gas phase and in different solvents have been used to assess the stability of the title compound.  相似文献   

6.
彭亚晶  付星  蒋艳雪 《化学通报》2015,78(10):923-927
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了气相水杨酸(SA)分子的激发态氢键动力学过程。通过对水杨酸分子基态和激发态结构的优化,以及对其稳态吸收和发射光谱特性、前线分子轨道、红外振动光谱和势能曲线的计算分析,阐明水杨酸分子内质子转移可在激发态下自发地发生,导致其激发态可存在烯醇式和酮式两种异构体结构,并揭示了这种质子转移源于分子内电荷转移的激发态氢键的加强机制。  相似文献   

7.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

8.
The solvatochromic behavior of two newly synthesized naphthalimide derivatives (I and II) which have potential antioxidative activities in anticarcinogenic drug development treatment, has been monitored in protic and aprotic solvents of different polarity applying steady-state and time-resolved fluorescence techniques. The compounds exhibit unique photophysical response in different solvent environments. The spectral trends do not appear to originate only from changes in the solvent polarity but also indicate that hydrogen bonding interactions and intramolecular charge transfer (ICT) influence the energy of electronic excitation of the compounds. Incorporation of an amino group at C(4) position of the naphthalimide ring in II makes it behave differently from I in terms of spectral characterization and fluorescence efficacy of the systems. The nonradiative relaxation process of the compounds is governed by medium polarity. The ground state geometry, lowest energy transition, and the UV-vis absorption energy of the compounds were studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31G* level, which showed that the calculated outcomes were in good agreement with experimental data.  相似文献   

9.
We describe the development of empirical potential functions for the study of the excited state intramolecular proton transfer reaction in 1-(trifuloroacetylamino)-naphtaquinone (TFNQ). The potential is a combination of the standard CHARMM27 force field for the backbone structure of TFNQ and an empirical valence bond formalism for the proton transfer reaction. The latter is parameterized to reproduce the potential energies both in the ground and the excited state, determined at the CASPT2 level of theory. Parameters describing intermolecular interactions are fitted to reproduce molecular dipole moments computed at the CASSCF level of theory and to reproduce ab initio hydrogen bonding energies and geometries for TFNQ-water bimolecular complexes. The utility of this potential energy function was examined by computing the potentials of mean force for the proton transfer reactions in the gas phase and in water, in both electronic states. The ground state PMF exhibits little solvent effects, whereas computed potential of mean force shows a solvent stabilization of 2.5 kcal mol−1 in the product state region, suggesting proton transfer is more pronounced in polar solvents, consistent with experimental findings. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

10.
Spectroscopic studies on excited-state proton transfer (ESPT) of hydroxyquinoline (6HQ) have been performed in a previous paper. And a hydrogen-bonded network formed between 6HQ and acetic acid (AcOH) in nonpolar solvents has been characterized. In this work, a time-dependent density functional theory (TDDFT) method at the def-TZVP/B3LYP level was employed to investigate the excited-state proton transfer via hydrogen-bonded AcOH wire for 6HQ. A hydrogen-bonded wire containing three AcOH molecules at least for connecting the phenolic and quinolinic -N- group in 6HQ has been confirmed. The excited-state proton transfer via a hydrogen-bonded wire could result in a keto tautomer of 6HQ and lead to a large Stokes shift in the emission spectra. According to the results of calculated potential energy (PE) curves along different coordinates, a stepwise excited-state proton transfer has been proposed with two steps: first, an anionic hydrogen-bonded wire is generated by the protonation of -N- group in 6HQ upon excitation to the S(1) state, which increases the proton-capture ability of the AcOH wire; then, the proton of the phenolic group transfers via the anionic hydrogen-bonded wire, by an overall "concerted" process. Additionally, the formation of the anionic hydrogen-bonded wire as a preliminary step has been confirmed by the hydrogen-bonded parameters analysis of the ESPT process of 6HQ in several protic solvents. Therefore, the formation of anionic hydrogen-bonded wire due to the protonation of the -N- group is essential to strengthen the hydrogen bonding acceptance ability and capture the phenolic proton in the 6HQ chromophore.  相似文献   

11.
Photophysical properties of a natural plant alkaloid, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), which comprises both proton donating and accepting sites, have been studied in different solvents using steady state and time-resolved fluorescence techniques primarily to understand the origin of dual fluorescence that this molecule exhibits in some specific alcoholic solvents. Ground and excited state calculations based on density functional theory have also been carried out to help interpretation of the experimental data. It is shown that the long-wavelength emission of the molecule is dependent on the hydrogen bond donating ability of the solvent, and in methanol, this emission band arises solely from an excited state reaction. However, in ethylene glycol, both ground and excited state reactions contribute to the long wavelength emission. The time-resolved fluorescence data of the system in methanol and ethylene glycol indicates the presence of two different hydrogen bonded species of ellipticine of which only one participates in the excited state reaction. The rate constant of the excited state reaction in these solvents is estimated to be around 4.2-8.0 × 10(8) s(-1). It appears that the present results are better understood in terms of solvent-mediated excited state intramolecular proton transfer reaction from the pyrrole nitrogen to the pyridine nitrogen leading to the formation of the tautomeric form of the molecule rather than excited state proton transfer from the solvents leading to the formation of the protonated form of ellipticine.  相似文献   

12.
13.
The excited-state dynamics of the excited-state proton transfer and intramolecular twisted charge transfer (TICT) reactions of a molecular photoswitch 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine (DHP) in aprotic and alcoholic solvents have been theoretically investigated by using time-dependent density functional theory. The excited-state intramolecular proton transfer (ESIPT) reaction of DHP proceeding upon excitation in all the solvents has been confirmed, and the dual emission has been assigned to the enol and keto forms of DHP. However, for methanol and ethanol solvents within strong hydrogen-bonded capacity, the intermolecular hydrogen bonds between DHP and methanol/ethanol would promote an excited-state double proton transfer (ESDPT) along the hydrogen-bonded bridge. Importantly, the previous proposed ESDPT-triggered TICT mechanism of DHP in methanol and ethanol was not supported by our calculations. The twist motion would increase the total energy of the system for both the products of ESIPT and ESDPT. According to the calculations of the transition states, the ESDPT reaction occurs much easier in keto form generated by ESIPT. Therefore, a sequential ESIPT and ESDPT mechanism of DHP in methanol and ethanol has been reasonably proposed.  相似文献   

14.
15.
The density functional theory was employed to investigate Eu(III) complexes with three beta-diketonates and two phosphine oxides (complex M1: Eu(bdk)3(TPPO)2, complex M2: Eu(bdk)3(TMPO)2, and complex M3: Eu(bdk)3(TPPO)(TMPO)) deemed to be the model complexes of the fluorescence compounds for the ultraviolet LED devices we have recently developed. For each complex, two minimum energy points corresponding to two different optimized geometries (structures A and B) have been found, and the difference of the energy between two minimum energy points is found to be quite small (less than 1 kcal/mol). Vertical excitation energies and oscillator strengths for each complex at two optimized geometries have been obtained by the time-dependent density functional theory, and the character of the excited states has been investigated. For complex M3, the absorption edge is red-shifted, and the oscillator strengths are relatively large. The efficiency of intersystem crossing and energy transfer from the triplet excited state to the Eu(III) ion is considered by calculating DeltaE(ISC) (the energy difference between the first singlet excited state and the first triplet excited state) and DeltaE(ET) (the difference between the excitation energy of the complex for the first triplet excited state and the emission energy of the Eu(III) ion for 5D to 7F).  相似文献   

16.
The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.  相似文献   

17.
Steady-state and time-resolved techniques were employed to study the nonradiative process of curcumin dissolved in ethanol and 1-propanol in a wide range of temperatures. We found that the nonradiative rate constants at temperatures between 175-250 K qualitatively follow the same trend as the dielectric relaxation times of both neat solvents. We attribute the nonradiative process to solvent-controlled proton transfer. We also found a kinetic isotope effect on the nonradiative process rate constant of ~2. We propose a model in which the excited-state proton transfer breaks the planar hexagonal structure of the keto-enol center of the molecule. This, in turn, enhances the nonradiative process driven by the twist angle between the two phenol moieties.  相似文献   

18.
19.
Excited‐state double proton transfer (ESDPT) in the (3‐methyl‐7‐azaindole)‐(7‐azaindole) heterodimer is theoretically investigated by the long‐range corrected time‐dependent density functional theory method and the complete‐active‐space second‐order perturbation theory method. The calculated potential energy profiles exhibit a lower barrier for the concerted mechanism in the locally excited state than for the stepwise mechanism through the charge‐transfer state. This result suggests that the ESDPT in the isolated heterodimer is likely to follow the former mechanism, as has been exhibited for the ESDPT in the homodimer of 7‐azaindole. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
We present an investigation of the decarboxylation reaction of ketoprofen (KP) induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions. Nanosecond time-resolved resonance Raman spectroscopy results show that the decarboxylation reaction is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration. These experimental results are consistent with results from density functional theory calculations in which 1) the activation energy barriers for the triplet-state intramolecular proton transfer and associated decarboxylation process become lower when more water molecules (from one up to four molecules) are involved in the reaction system and 2) perchloric acid, sulfuric acid, and hydrochloric acid can shuttle a proton from the carboxyl to carbonyl group through an initial intramolecular proton transfer of the triplet excited state, which facilitates the cleavage of the C-C bond, thus leading to the decarboxylation reaction of triplet state KP. During the decarboxylation process, the water molecules and acid molecules may act as bridges to mediate intramolecular proton transfer for the triplet state KP when KP is irradiated by ultraviolet light in water-rich or acidic aqueous solutions and subsequently it generates a triplet-protonated carbanion biradical species. The faster generation of triplet-protonated carbanion biradical in acidic solutions than in water-rich solutions with a high water ratio is also supported by the lower activation energy barrier calculated for the acid-mediated reactions versus those of water-molecule-assisted reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号