首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yang S  Kim JY  Lee SJ  Lee SS  Kim JM 《Lab on a chip》2011,11(2):266-273
Particle focusing in planar geometries is essentially required in order to develop cost-effective lab-on-a-chips, such as cell counting and point-of-care (POC) devices. In this study, a novel method for sheathless particle focusing, called "Elasto-Inertial Particle Focusing", was demonstrated in a straight microchannel. The particles were notably aligned along the centerline of the straight channel under a pressure-driven flow without any additional external force or apparatus after the addition of an elasticity enhancer: PEO (poly(ethylene oxide)) (~O(100) ppm). As theoretically predicted (elasticity number: El≈O(100)), multiple equilibrium positions (centerline and corners) were observed for the viscoelastic flow without inertia, whereas three-dimensional particle focusing only occurred when neither the elasticity nor the inertia was negligible. Therefore, the three-dimensional particle focusing mechanism was attributed to the synergetic combination of the elasticity and the inertia (elasticity number: El≈O(1-10)). Furthermore, from the size dependence of the elastic force upon particles, we demonstrated that a mixture of 5.9 and 2.4 μm particles was separated at the exit of the channel in viscoelastic flows. We expect that this method can contribute to develop the miniaturized flow cytometry and microdevices for cell and particle manipulation.  相似文献   

2.
Elastic nature of the viscoelastic fluids induces lateral migration of particles into a single streamline and can be used by microfluidic based flow cytometry devices. In this study, we investigated focusing efficiency of polyethylene oxide based viscoelastic solutions at varying ionic concentration to demonstrate their use in impedimetric particle characterization systems. Rheological properties of the viscoelastic fluid and particle focusing performance are not affected by ionic concentration. We investigated the viscoelastic focusing dynamics using polystyrene (PS) beads and human red blood cells (RBCs) suspended in the viscoelastic fluid. Elasto‐inertial focusing of PS beads was achieved with the combination of inertial and viscoelastic effects. RBCs were aligned along the channel centerline in parachute shape which yielded consistent impedimetric signals. We compared our impedance‐based microfluidic flow cytometry results for RBCs and PS beads by analyzing particle transit time and peak amplitude at varying viscoelastic focusing conditions obtained at different flow rates. We showed that single orientation, single train focusing of nonspherical RBCs can be achieved with polyethylene oxide based viscoelastic solution that has been shown to be a good candidate as a carrier fluid for impedance cytometry.  相似文献   

3.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   

4.
A novel method is reported to enhance the focusing of microparticle in the viscoelastic fluid. Gradually contracted geometry is designed in microchannel, which changes the distribution of the elastic lift force on the cross section. Additionally, it induces the viscous drag force and the Saffman lift force in the lateral direction. Under the combined effect of these forces, microparticles fast migrate to the center of the channel. In comparison to the channel with constant cross section, the present channel significantly enhances the particle's lateral migration, leading to efficient viscoelastic particle focusing in a short channel length. The influence of flow rate, channel length, particle size and fluid property on the particle focusing is also investigated. With simple structure, small footprint and perfect particle focusing performance, the present device has great potential in the particle focusing processes in various lab-on-a-chip applications.  相似文献   

5.
《Electrophoresis》2018,39(2):417-424
Herein, we proposed a strategy for controlling the particle focusing position in Dean‐coupled elasto‐inertial flows via adjusting the polymer concentration of viscoelastic fluids. The physics behind the control strategy was then explored and discussed. At high polymer concentrations, the flowing particles could be single‐line focused exactly at the channel centerline under the dominated elastic force. The center‐line focusing in our spiral channel may employed as a potential pretreatment scheme for microflow cytometry detection. With further decreasing polymer concentrations, the particles would shift into the outer channel region under the comparable competition between inertial lift force, elastic force and Dean drag force. Finally, the observed position‐shifting was successfully employed for particle concentration at a throughput much higher than most existing elasto‐inertial microfluidics.  相似文献   

6.
Separation of microparticle in viscoelastic fluid is highly required in the field of biology and clinical medicine. For instance, the separation of the target cell from blood is an important prerequisite step for the drug screening and design. The microfluidic device is an efficient way to achieve the separation of the microparticle in the viscoelastic fluid. However, the existing microfluidic methods often have some limitations, including the requirement of the long channel length, the labeling process, and the low throughput. In this work, based on the elastic-inertial effect in the viscoelastic fluid, a new separation method is proposed where a gradually contracted microchannel is designed to efficiently adjust the forces exerted on the particle, eventually achieving the high-efficiency separation of different sized particles in a short channel length and at a high throughput. In addition, the separation of WBCs and RBCs is also validated in the present device. The effect of the flow rate, the fluid property, and the channel geometry on the particle separation is systematically investigated by the experiment. With the advantage of small footprint, simple structure, high throughput, and high efficiency, the present microfluidic device could be utilized in the biological and clinical fields, such as the cell analysis and disease diagnosis.  相似文献   

7.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

8.
The formation of a line of equally spaced particles at the centerline of a microchannel, referred as “particle ordering,” is desired in several microfluidic applications. Recent experiments and simulations highlighted the capability of viscoelastic fluids to form a row of particles characterized by a preferential spacing. When dealing with non-Newtonian fluids in microfluidics, the adherence condition of the liquid at the channel wall may be violated and the liquid can slip over the surface, possibly affecting the ordering efficiency. In this work, we investigate the effect of wall slip on the ordering of particles suspended in a viscoelastic liquid by numerical simulations. The dynamics of a triplet of particles in an infinite cylindrical channel is first addressed by solving the fluid and particle governing equations. The relative velocities computed for the three-particle system are used to predict the dynamics of a train of particles flowing in a long microchannel. The distributions of the interparticle spacing evaluated at different slip coefficients, linear particle concentrations, and distances from the channel inlet show that wall slip slows down the self-assembly mechanism. For strong slipping surfaces, no significant change of the initial microstructure is observed at low particle concentrations, whereas strings of particles in contact form at higher concentrations. The detrimental effect of wall slip on viscoelastic ordering suggests care when designing microdevices, especially in case of hydrophobic surfaces that may enhance the slipping phenomenon.  相似文献   

9.
Saliva and blood plasma are non-Newtonian viscoelastic fluids that play essential roles in the transport of particulate matters (e.g., food and blood cells). However, whether the viscoelasticity of such biofluids alters the dynamics of suspended particles is still unknown. In this study, we report that under pressure-driven microflows of both human saliva and blood plasma, spherical particles laterally migrate and form a focused stream along the channel centerline by their viscoelastic properties. We observed that the particle focusing varied among samples on the basis of sampling times/donors, thereby demonstrating that the viscoelasticity of the human biofluids can be affected by their compositions. We showed that the particle focusing, observed in bovine submaxillary mucin solutions, intensified with the increase in mucin concentration. We expect that the findings from this study will contribute to the understanding of the physiological roles of viscoelasticity of human biofluids.  相似文献   

10.
A custom designed vertical oscillation rheometer (VOR) is used for the rheological measurements of electrorheological (ER) fluids consisting of 15 and 20 vol.% semiconducting polyaniline particles suspended in silicone oil. The viscoelastic material functions, including complex viscosity and complex shear modulus, are measured via geometric parameters, measured force, and applied strain of the VOR. Viscoelastic properties of the ER fluids are also measured as a function of applied electric field strength and particle concentration. The VOR, equipped with a high voltage generator, can easily be constructed and used to measure ER properties. It is further found that polyaniline suspensions behave as viscoelastic materials in an electric field. In linear viscoelastic conditions, elasticity was promoted with the increment of electric field due to particle chain structure in the presence of the applied electric field. It is also found that the applied electric field rather than particle concentration enhanced the elasticity of ER fluids.  相似文献   

11.
Insulator‐based dielectrophoresis has to date been almost entirely restricted to Newtonian fluids despite the fact that many of the chemical and biological fluids exhibit non‐Newtonian characteristics. We present herein an experimental study of the fluid rheological effects on the electroosmotic flow of four types of polymer solutions, i.e., 2000 ppm xanthan gum (XG), 5% polyvinylpyrrolidone (PVP), 3000 ppm polyethylene oxide (PEO), and 200 ppm polyacrylamide (PAA) solutions, through a constriction microchannel under DC electric fields of up to 400 V/cm. We find using particle streakline imaging that the fluid elasticity does not change significantly the electroosmotic flow pattern of weakly shear‐thinning PVP and PEO solutions from that of a Newtonian solution. In contrast, the fluid shear‐thinning causes multiple pairs of flow circulations in the weakly elastic XG solution, leading to a central jet with a significantly enhanced speed from before to after the channel constriction. These flow vortices are, however, suppressed in the strongly viscoelastic and shear‐thinning PAA solution.  相似文献   

12.
Park HM  Lee WM 《Lab on a chip》2008,8(7):1163-1170
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.  相似文献   

13.
The enrichment and focusing of the nano-/submicroparticle (e.g., 150–1000 nm microvesicle shed from the plasma membrane) in the viscoelastic fluid has great potentials in the biomedical and clinical applications such as the disease diagnosis and the prognostic test for liquid biopsy. However, due to the small size and the resulting weak hydrodynamic force, the efficient manipulation of the nano-/submicroparticle by the passive viscoelastic microfluidic technology remains a major challenge. For instance, a typically long channel length is often required to achieve the focusing or the separation of the nano-/submicroparticle, which makes it difficult to be integrated in small chip area. In this work, a microchannel with gradually contracted cross-section and high aspect ratio (the ratio of the height to the average width of channel) is utilized to enhance the hydrodynamic force and change the force direction, eventually leading to the efficient enrichment of nano-/submicroparticles (500 and 860 nm) in a short channel length (2 cm). The influence of the flow rate, the particle size, the solid concentration, and the channel geometry on the enrichment of the nano-/submicroparticles are investigated. With simple structure, small footprint, easy operation, and good performance, the present device would be a promising platform for various lab-chip microvesicle-related biomedical research and disease diagnosis.  相似文献   

14.
A theoretical model was developed to describe the dynamics of spontaneous penetration of viscoelastic fluids into capillaries. The model agrees quantitatively with recent experiments on absorption of droplets of polymer solutions by glass capillaries [A.V. Bazilevsky, K.G. Kornev, A.N. Rozhkov, A.V. Neimark, J. Colloid Interface Sci. (2003)]. The rate of penetration progressively reduces with the increase in fluid elasticity. Analysis revealed two main contributions to the viscoelastic drag of the liquid column: (i) viscous resistance, which is independent of fluid elasticity, and (ii) viscoelastic resistance, known as the Weissenberg effect. We analytically derived an augmented Bosanquet equation for the maximal velocity of penetration by balancing capillary, inertia, and viscoelastic forces. For slow creep of a liquid column, the Lucas-Washburn equation was modified by accounting for the Weissenberg effect. A series of numerical calculations were performed to demonstrate characteristic features of absorption of fluids at different conditions. This article also discusses some problems specific to absorption of biofluids. We show that deformations of cell membranes in the external converging flow may cause their rupture at the pore entrance.  相似文献   

15.
This study presents on-chip continuous accumulation and concentration of nanoscale samples using a cascade alternating current electroosmosis (cACEO) flow. ACEO can generate flow motion caused by ion movement due to interactions between the AC electric field and the induced charge layer on the electrode surface, with the potential to accumulate particles, especially in low-conductive liquid. However, the intrinsic particle diffusive motion, which is sensitive to particle size, is an essential element influencing accumulation efficiency. In this study, an electrode combining chevron and double-gap geometry embedded in a microfluidic channel was developed to perform efficient three-dimensional (3D) nanoparticle focusing using ACEO. The chevron electrode pattern was introduced upstream of the focusing zone to overcome particle accumulation in scattering zones near the channel sidewall. To demonstrate the efficiency of the proposed device for particle accumulation, three nanoparticle types were used: latex, metal, and biomaterial. Continuous 3D concentration of 50-nm polystyrene particles was confirmed. The concentration factor, determined based on image processing, became quite high when 50-nm gold nanoparticles were used. Moreover, nanoparticles with a 20-nm diameter were accumulated using cACEO. Finally, we used the concentrator chip to accumulate 50-nm liposome particles, confirming that the device could also successfully concentrate biomaterials.  相似文献   

16.
JY Kim  SW Ahn  SS Lee  JM Kim 《Lab on a chip》2012,12(16):2807-2814
Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.  相似文献   

17.
Experimental study is performed to understand and quantify the wall and eccentric retardation effects on spheres settling in shear thinning and shear-thinning viscoelastic fluids over a wide range of diameter ratios (0.02 < λ < 0.9). The four-parameter Carreau viscosity equation has been chosen to represent the apparent viscosity-shear rate of polyacrylamide solutions. Two new wall factor corrections are presented with excellent agreement compared to experimental data.

The terminal settling velocity of a sphere in bounded fluid is significantly reduced by the presence of confining boundaries, named wall retardation effect that decreases due to the shear-thinning behavior of power law fluids, which is weaken further by the elastic effect of viscoelastic fluids. The wall factors of spheres settling in viscoelastic fluids increase at low ξ up to 50, followed by a horizontal confidence region (0.7 ≤ f ≤ 1) at high ξ. In this region, the wall factor is mainly dominated by fluids’ elasticity, which is more distinguished for small spheres. As the settling spheres approach to the wall (b/R → 1), the neighboring wall exert more intensive retardation that reduce the terminal settling velocity greatly when b/R > 0.6 in pure shear-thinning fluids, and the extra retardation effect of nearby wall increases at high concentration due to the enhanced non-Newtonian property. In contrast, the eccentric effect on settling velocity in viscoelastic fluids is cut down greatly by the fluid's elasticity, which is negligible.  相似文献   

18.
Hydrodynamic focusing—a versatile tool   总被引:1,自引:0,他引:1  
The control of hydrodynamic focusing in a microchannel has inspired new approaches for microfluidic mixing, separations, sensors, cell analysis, and microfabrication. Achieving a flat interface between the focusing and focused fluids is dependent on Reynolds number and device geometry, and many hydrodynamic focusing systems can benefit from this understanding. For applications where a specific cross-sectional shape is desired for the focused flow, advection generated by grooved structures in the channel walls can be used to define the shape of the focused flow. Relative flow rates of the focused flow and focusing streams can be manipulated to control the cross-sectional area of the focused flows. This paper discusses the principles for defining the shape of the interface between the focused and focusing fluids and provides examples from our lab that use hydrodynamic focusing for impedance-based sensors, flow cytometry, and microfabrication to illustrate the breadth of opportunities for introducing new capabilities into microfluidic systems. We evaluate each example for the advantages and limitations integral to utilization of hydrodynamic focusing for that particular application.  相似文献   

19.
Herein, we have reviewed fumed silica suspensions in dispersing fluids, polymer melts, and polymer solutions, focusing on their dispersion stability and rheological properties as a function of the surface character of fumed silica powders and the silica volume fraction, ?. Hydrophilic fumed silica powders are well dispersed at ? < 0.01 in polar dispersing fluids or polar polymer melts, and their phase states change from sol to gel with increasing ?. Such changes should also be strongly related to the rheological responses of the hydrophilic fumed silica suspensions, which change from Newtonian flow behavior to gel-like elasticity with increasing ?. On the other hand, hydrophobic fumed silica powders are stabilized in both polar and nonpolar dispersing fluids, depending on the interactions between the surface hydrophobic moieties and the dispersing fluids, in addition to those between the residual surface silanol groups and dispersing fluid, except for the particle–particle interactions. Moreover, the effects of the adsorption and desorption of polymers, as well as of non-adsorbing polymers on the dispersion stability and rheological behavior of fumed silica suspensions are discussed, by taking account of their optical microscopic observation and SANS curves.  相似文献   

20.
In this article, we discuss the dynamics of a single drop immersed in an immiscible liquid, under an imposed shear flow. The two situations of a viscoelastic matrix with a Newtonian drop and of a viscoelastic drop in a Newtonian matrix are considered, both systems being characterized by a viscosity ratio equal to one, and by the same elasticity parameter. Experimental data are taken with a rheo-optical computer-assisted shearing device, allowing for drop observation from the vorticity direction of the shear flow. Data favourably compare with predictions of the recently proposed Maffettone-Greco model, where the drop is described as a deforming ellipsoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号