首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
A simple electroanalytical procedure has been developed for the determination of polyamine spermine using the ZnONPs-MWCNTs-CPE sensor. Spermine has been irreversibly oxidized on a modified electrode at a potential of +0.92 V versus Ag/AgCl (KCl, 3.5 mol L−1). The developed sensor demonstrated a respective linear response in borate buffer pH 8.5 from 2 μmol L−1 to 100 μmol L−1, with a detection limit of 0.300 μmol L−1 and quantification limit of 0.998 μmol L−1. The proposed sensor showed high reproducibility (RSD = 2.58 %), stability, robustness, and no obvious interference effects of several inorganic ions and organic molecules. The obtained results demonstrated excellent performance during the determination of the spermine in human urine samples with satisfactory recovery results (98.41–101.34 %), offering promising opportunities for practical clinical analysis.  相似文献   

2.
Simple and rapid voltammetric method for simultaneous determination of all-trans-retinyl acetate (RAc) or all-trans-retinyl palmitate (RPa) and α-tocopheryl acetate (α-TOAc) has been proposed. The respective method was based on the anodic oxidation of the compounds of interest by square-wave voltammetry in acetone with 0.1 mol L−1 LiClO4 at the glassy carbon electrode. The procedure was also beneficial with respect to simple dissolution of sample directly in the supporting electrolyte. The all-trans-retinyl acetate could be quantified in two linear ranges (3.1–140 μmol L−1 and 140–400 μmol L−1) and α-tocopheryl acetate in linear range 5.3–400 μmol L−1 with detection limits of 0.9 μmol L−1 RAc (or 0.8 μmol L−1 RPa) and of 1.6 μmol L−1 α-TOAc. Selected commercial cosmetic products were analysed achieving satisfactory recoveries.  相似文献   

3.
A new electrochemical sensor based on a carbon nanotube paste electrode modified with a Santa Barbara Amorphous material (SBA-15) decorated with silver nanoparticles, namely CNT/SBA/Ag-PE, was developed. It was successfully applied for individual and simultaneous determination of both paracetamol (PC) and sulfamethoxazole (SMZ) medicines. The electrode exhibited a linear dynamic range of 0.12–110 μmol L−1 for paracetamol and 0.06–70 μmol L−1 for sulfamethoxazole, and detection limits of 38 and 19 nmol L−1, respectively. The proposed sensor offered high sensitivity, fast response time and the potential for detecting both drugs simultaneously. The CNT/SBA/Ag-PE enabled the simultaneous determination of PC and SMZ in urine samples with high recovery rates.  相似文献   

4.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

5.
《Electroanalysis》2018,30(8):1870-1879
A portable electroanalytical system applied for rapid and simultaneous determination of uric acid (UA) and nitrite (NIT) in human biological fluids (urine, saliva and blood) is reported. The system is based on batch‐injection analysis with multiple‐pulse amperometric (BIA‐MPA) detection using screen‐printed electrodes (SPEs) modified with multi‐walled carbon nanotubes. Sample dilution in optimized electrolyte (0.1 mol L−1 Britton‐Robinson buffer pH 2) followed by injection of 100 μL on the electrode surface using an electronic micropipette is performed. UA is detected at +0.45 V and both UA+NIT at +0.70 V. Linear calibration plots for UA and NIT were obtained over the range of 1–500 μmol L−1 with detection limits of 0.05 and 0.06 μmol L−1, respectively. For comparison, a differential‐pulse voltammetric (DPV) method was optimized, and linear calibration plots for UA and NIT were obtained over range of 1–30 μmol L−1 and 1–40 μmol L−1 with detection limits of 0.1 and 0.3 μmol L−1, respectively. BIA‐MPA is highly precise (RSD<1.3 %), fast (160 h−1) and free from sample‐matrix interferences as recovery values ranged from 77 to 121 % for spiked samples (short contact time of sample aliquot with SPE). Contrarily, recovery tests conducted using DPV did not provide adequate recovery values (>150 %), probably due to the longer contact time of the SPE with the biological samples during analysis leading to a severe interference of sample matrices.  相似文献   

6.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

7.
A novel synthesized tetraamino cobalt(II) phthalocyanine monomer was used for the fabrication of a sensor by electrochemical polymerization. A disposable electrochemical sensor based on the use of a screen printed carbon electrode covered with an electropolymerized film of tetraamino cobalt(II) phthalocyanine for the determination of L-dopa in pharmaceutical tablets and biological samples was described. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the bare and modified electrode. For the electrochemical detection of L-dopa differential pulse voltammetry was used. The proposed method exhibits a good response towards electrooxidation of L-dopa in the linear concentration range: from 0.1 to 1000.0 μmol L−1 in BRB pH=2.0, with a detection limit of 0.03 μmol L−1 and from 1 to 1000 μmol L−1 in PBS pH=7.4, with a detection limit of 0.33 μmol L−1. Due to the fact that the developed sensor was applied in two different types of real samples, two buffer media were used, BRB pH=2.0 for pharmaceutical and urine samples and PBS pH=7.4 for whole blood samples. The proposed pCoTAPc/SPCE was successfully applied for the determination of L-dopa in pharmaceutical tablets, urine and in whole blood samples with satisfactory results.  相似文献   

8.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

9.
A rapid method for determination of hydrogen peroxide based on a non-enzymatic amperometric sensor with an online dialysis unit was developed for analysis of sample with complicated matrices. A porous gold modified gold screen-printed electrode was prepared by a simple method using 9 V-battery electrodeposition. Based on data from amperometry, a linear dynamic range can be obtained in the range of 10 to 1000 μmol L−1, with a limit of detection of 0.37 μmol L−1. The proposed system was successfully applied to determine H2O2 in various milk samples with rapid analysis, high electrode stability, and excellent repeatability (1.95 % RSD with 100 replications).  相似文献   

10.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

11.
The second order voltammetric technique of high resolution, Differential Alternative Pulses Voltammetry (DAPV), was applied for the simultaneous determination of hydroquinone (HQ) and catechol (CC) on bare spectroscopic graphite electrode. Well resolved anodic and cathodic peaks situated on both sides of the zero line were obtained, while the differential pulse voltammograms were overlapped. The linear concentration range for HQ and CC quantification by DAPV was extended up to 20 μmol L−1 for both the isomers. The sensitivity of the determination was found to be 6.00 μA L μmol−1 and 3.61 μA L μmol−1, while the limit of detection reached was 0.2 μmol L−1 and 0.5 μmol L−1 for HQ and CC, respectively. No interference was observed from the commonly coexisting organic species such as resorcinol, phenol and p‐benzoquinone. The great resolution power of DAPV permitted obtaining excellent results without any electrode modification and any mathematical data processing.  相似文献   

12.
Herein, co-electrodeposition of AuNPs and ERGO onto GCE was conducted to prepare the modified electrode, GCE/AuNPs-ERGO. The poly(indole-5-carboxylic acid) (P(In-5-COOH) was then coated onto the GCE/AuNPs-ERGO with the help of electropolymerization. FT-IR, FE-SEM and EDX, and XRD techniques were employed to characterize the prepared nanocomposite. The nanocomposite modified electrode (GCE/AuNPs-ERGO/P(In-5-COOH)) was examined for the electrochemical reduction of H2O2 using chronoamperometry. A high reduction current for H2O2 was observed due to the synergistic effect between AuNPs-ERGO and P(In-5-COOH). The proposed sensor demonstrated a wide linear range of 0.025–750 μmol L−1, with a LOD of 0.008 μmol L−1 at −0.4 V. Furthermore, the developed sensor was applied for the detection of H2O2 in fetal bovine serum and urine samples.  相似文献   

13.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

14.
It is significant to develop a point-of-care testing (POCT) method for rapid detection of medicinal molecules. In this paper, a graphdiyne (GDY)-ionic liquid (IL) composite was prepared via one-step facile ultrasound preparation process and then modified on gold (Au) electrode surface by simple casting method. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of GDY-IL composite. Cyclic voltammetric results proved that GDY-IL composite on the electrode surface could effectively improve electron transfer rate, which meant that GDY-IL composite had high conductivity with big surface area. Finally, the modified electrode exhibited excellent performances for rutin detection with wider linear range (8.0×10−9 mol L−1–2.0×10−6 mol L−1 and 2.0×10−6 mol L−1–1.5×10−4 mol L−1) and lower detection limit (2.7 nmol L−1, 3S0/S). The Nafion/GDY-IL/Au electrode showed good sensitivity and high selectivity, which was satisfactory in analytical application to real samples. Therefore, the GDY-IL composite modified electrode has the potential applications in the POCT for electrochemical analysis of various medicinal molecules.  相似文献   

15.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

16.
We report the application of an electrochemical sensor based on gold-copper metal-organic framework immobilized on the surface of a glassy carbon electrode to the detection of captopril (CAP), an angiotensin-converting enzyme inhibitor. Cyclic voltammetric studies showed that the joint action of gold nanoparticles and copper-1,3,5-benzenetricarboxylate (Cu−BTC) enhanced the electrochemical response to the Cu-captopril complex that is adsorbed onto the surface of the electrode. Release of gold nanoparticles from Au@Cu−BTC not only increased the conductivity of the electrode but also provided a more favorable environment for the deposition of reduced Cu that is catalytically renewed on the electrode surface. The anodic current of the Cu(II)−CAP oxidation peak varied linearly within two concentration ranges, namely 0.5 to 7.0 μmol L−1 and 10 to 2500 μmol L−1, with a limit of detection of 0.047 μmol L−1. The mean recovery for the determination of captopril in commercial tablets was 100.3 % suggesting that the method has considerable potential for future industrial applications.  相似文献   

17.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

18.
Contamination of natural water by mercury (Hg2+) and bismuth (Bi3+) metal ions have been extensively studied due to their toxic effects. A validated square-wave anodic stripping voltammetry (SW-ASV) method for determining Bi3+ and Hg2+ ions individually and simultaneously is described. A new electrochemical sensor was constructed using a gold (Au) electrode that has been modified with poly(1,2-diaminoanthraquinone) (p-1,2-DAAQ). Scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy were used to characterize the p-1,2-DAAQ/Au modified electrode. Factors such as the polymer film thickness, electrolyte, square wave parameters and preconcentration conditions were optimized to improve the performance of the modified Au electrode. Good linear responses were achieved in the concentration ranges of 1–200 μg L−1 and 1–50 μg L−1 forBi3+ and Hg2+, respectively, and the limits of detection were 0.27 μg L−1 (Bi3+) and 0.29 μg L−1 (Hg2+). The interference study results illustrated the high selectivity of the modified electrode for detection of Bi3+ and Hg2+. The proposed SW-ASV method was successfully applied for Bi3+ and Hg2+analyses in different real water samples.  相似文献   

19.
The preparation and characterisation of a new composite electrode with Co3O4 particles-modified multi-walled carbon nanotube (MWCNT) and poly(phenosafranine), as well as its novel application for the voltammetric detection of rutin was described. The resulting composite electrode was characterised using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). In the optimised experimental conditions, the oxidation peak current (Ipa) of rutin showed a linear increase in concentration, between 0.008–0.6 and 0.80–6.0 μmol L−1, with a detection limit of 0.00379 μmol L−1. Due to its good selectivity and stability, the composite electrode was successfully applied in detecting rutin in pharmaceutical formulations.  相似文献   

20.
A bud-like poly-L-tyrosine/Bi modified glassy carbon electrode (p-Tyr/Bi/GC) was prepared by CV and in situ Bi plating, whose conductivity and membrane morphology were characterized by CV, EIS and SEM, respectively. The p-Tyr membrane can effectively promote the enrichment of Cd2+. The optimal Tyr concentration and scanning number for p-Tyr/GC preparation were 2.0 mmol ⋅ L−1 and 35, while the optimal Bi3+ concentration, pH and Cd2+ accumulation potential in test medium were 3.0 μmol ⋅ L−1, 6.5 and −1.3 V, respectively. The linear equation of p-Tyr/Bi/GC's response to Cd2+ (1.0 nmol ⋅ L−1 to 2.0 μmol ⋅ L−1) was ip (μA) = −0.6809 + 100.2c (μmol ⋅ L−1) (R2 = 0.9985) with a detection limit of 0.11 nmol ⋅ L−1 (3S/N). The elimination of interference caused by Cu2+ in sample was studied by electrodeposition. The p-Tyr/Bi/GC electrode was successfully used for detecting Cd in rice samples with good reliability and accuracy. The developed Cd2+ sensor exhibits high sensitivity, wide linear range and low detection limit, especially the designed method of eliminating Cu2+ interference has the characteristics of high selectivity, simple operation and wide application range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号