首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America.  相似文献   

2.
Echolocation effort (number and duration of echolocation click trains produced) by a harbor porpoise is described in relation to target presence, strength and distance, and performance of the detection task. The porpoise was presented with two target sizes at five distances (12-20 m), or no target, and had to indicate whether it could detect the target. Small, distant targets required long and multiple click trains. Multiple click trains mostly occurred when the small target was far away and not detected, and during target-absent trials in which the animal correctly responded. In target-absent trials, an incorrect response was linked to short click trains. Click train duration probably increased until the animal's certainty about the target's presence or absence exceeded a certain level, after which the porpoise responded.  相似文献   

3.
Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.  相似文献   

4.
Threshold characteristics of the human auditory brain stem response   总被引:3,自引:0,他引:3  
Auditory brain stem responses (ABRs) were recorded from ten normal-hearing subjects in response to 100-microseconds clicks from a TDH 49 earphone at a rate of 48 pps and at levels randomly varied in 2-dB steps between 34 and 52 dB p.e. SPL. At each level, 10 000 epochs were averaged with use of a weighted concept and a running estimate was made of the signal-to-noise ratio (SNR). This quantity was used to detect the presence of the ABR and the median threshold was found at 38 dB p.e. SPL. The mean averaged background noise level was 11.3 nVrms, and the "true" ABRrms amplitude function crossed this value at 35.5 dB p.e. SPL, which indicates the level where the SNR = 1. By extrapolation, it was found that the ABR amplitude became zero at 32 dB p.e. SPL. The perceptual thresholds of the click were estimated by means of a modified block up-down procedure, and the median value was found at 33 dB p.e. SPL. The slope of the amplitude function and the magnitude of the averaged background noise are the two factors responsible for the ABR threshold sensitivity, which thus depends on both physiological and technical parameters. Therefore, these have to be considered together with the method of detection when the ABR is used to indicate the hearing sensitivity.  相似文献   

5.
Traditionally, sperm whale clicks have been described as multipulsed, long duration, nondirectional signals of moderate intensity and with a spectrum peaking below 10 kHz. Such properties are counterindicative of a sonar function, and quite different from the properties of dolphin sonar clicks. Here, data are presented suggesting that the traditional view of sperm whale clicks is incomplete and derived from off-axis recordings of a highly directional source. A limited number of assumed on-axis clicks were recorded and found to be essentially monopulsed clicks, with durations of 100 micros, with a composite directionality index of 27 dB, with source levels up to 236 dB re: 1 microPa (rms), and with centroid frequencies of 15 kHz. Such clicks meet the requirements for long-range biosonar purposes. Data were obtained with a large-aperture, GPS-synchronized array in July 2000 in the Bleik Canyon off Vester?len, Norway (69 degrees 28' N, 15 degrees 40' E). A total of 14 h of sound recordings was collected from five to ten independent, simultaneously operating recording units. The sound levels measured make sperm whale clicks by far the loudest of sounds recorded from any biological source. On-axis click properties support previous work proposing the nose of sperm whales to operate as a generator of sound.  相似文献   

6.
Bottlenose dolphins (Tursiops truncatus) wore opaque suction cups over their eyes while stationing behind an acoustically opaque door. This put the dolphins in a known position and orientation. When the door opened, the dolphin clicked to detect targets. Trainers specified that Dolphin S emit a whistle if the target was a 7.5 cm water filled sphere, or a pulse burst if the target was a rock. S remained quiet if there was no target. Dolphin B whistled for the sphere. She remained quiet for rock and for no target. Thus, S had to choose between three different responses, whistle, pulse burst, or remain quiet. B had to choose between two different responses, whistle or remain quiet. S gave correct vocal responses averaging 114 ms after her last echolocation click (range 182 ms before and 219 ms after the last click). Average response for B was 21 ms before her last echolocation click (range 250 ms before and 95 ms after the last click in the train). More often than not, B began her whistle response before her echolocation train ended. The findings suggest separate neural pathways for generation of response vocalizations as opposed to echolocation clicks.  相似文献   

7.
为了增进珍稀齿鲸物种的了解和保护,对中华白海豚(Sousa chinensis)和东亚窄脊江豚(Neophocaena asiaeorientalis sunmeri)的回声定位信号特性进行了分析和比较.通过船只观测与声学监听的方式对厦门海域中华白海豚和东亚窄脊江豚的回声定位信号进行了调查,并对其声学参数进行了统计和对...  相似文献   

8.
In sperm whales (Physeter catodon L. 1758) the nose is vastly hypertrophied, accounting for about one-third of the length or weight of an adult male. Norris and Harvey [in Animal Orientation and Navigation, NASA SP-262 (1972), pp. 397-417] ascribed a sound-generating function to this organ complex. A sound generator weighing upward of 10 tons and with a cross-section of 1 m is expected to generate high-intensity, directional sounds. This prediction from the Norris and Harvey theory is not supported by published data for sperm whale clicks (source levels of 180 dB re 1 microPa and little, if any, directionality). Either the theory is not borne out or the data is not representative for the capabilities of the sound-generating mechanism. To increase the amount of relevant data, a five-hydrophone array, suspended from three platforms separated by 1 km and linked by radio, was deployed at the slope of the continental shelf off Andenes, Norway, in the summers of 1997 and 1998. With this system, source levels up to 223 dB re 1 microPa peRMS were recorded. Also, source level differences of 35 dB for the same click at different directions were seen, which are interpreted as evidence for high directionality. This implicates sonar as a possible function of the clicks. Thus, previously published properties of sperm whale clicks underestimate the capabilities of the sound generator and therefore cannot falsify the Norris and Harvey theory.  相似文献   

9.
The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.  相似文献   

10.
Masking-level differences (MLDs) were measured for trains of 2000-Hz bandpass clicks as a function of the interclick interval (ICI) and the number of clicks in the train. The magnitude of the MLD grew as the number of clicks in the train was increased from 1 to 32. While the MLDs tended to be larger at longer ICIs, the effect was mediated by changes in detectability in the homophasic conditions. For click trains consisting of 4-32 clicks, the improvement in detectability in the antiphasic conditions with increases in the number of clicks appears to be the result of integration of acoustic power, as is the case for the homophasic conditions. The absence of MLDs for short trains of high-frequency transients remains quite puzzling, since large MLDs are found with single, low-frequency transients.  相似文献   

11.
The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.  相似文献   

12.
Blainville's beaked whales (Mesoplodon densirostris) use broadband, ultrasonic echolocation signals with a -10 dB bandwidth from 26 to 51 kHz to search for, localize, and approach prey that generally consist of mid-water and deep-water fishes and squid. Although it is well known that the spectral characteristics of broadband echoes from marine organisms vary as a function of size, shape, orientation, and anatomical group, there is little evidence as to whether or not free-ranging toothed whales use spectral cues in discriminating between prey and nonprey. In order to study the prey-classification process, a stereo acoustic tag was deployed on a Blainville's beaked whale so that emitted clicks and the corresponding echoes from targets in the water could be recorded. A comparison of echoes from targets apparently selected by the whale and those from a sample of scatterers that were not selected suggests that spectral features of the echoes, target strengths, or both may have been used by the whale to discriminate between echoes. Specifically, the whale appears to favor targets with one or more nulls in the echo spectra and to seek prey with higher target strengths at deeper depths.  相似文献   

13.
Sperm whales (Physeter macrocephalus) produce multipulsed clicks with their hypertrophied nasal complex. The currently accepted view of the sound generation process is based on the click structure measured directly in front of, or behind, the whale where regular interpulse intervals (IPIs) are found between successive pulses in the click. Most sperm whales, however, are recorded with the whale in an unknown orientation with respect to the hydrophone where the multipulse structure and the IPI do not conform to a regular pulse pattern. By combining far-field recordings of usual clicks with acoustic and orientation information measured by a tag on the clicking whale, we analyzed clicks from known aspects to the whale. We show that a geometric model based on the bent horn theory for sound production can explain the varying off-axis multipulse structure. Some of the sound energy that is reflected off the frontal sac radiates directly into the water creating an intermediate pulse p1/2 seen in off-axis recordings. The powerful p1 sonar pulse exits the front of the junk as predicted by the bent-horn model, showing that the junk of the sperm whale nasal complex is both anatomically and functionally homologous to the melon of smaller toothed whales.  相似文献   

14.
Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via "click counting." Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n= 13 728 clicks) mean usual click rate was 1.272 clicks s(-1) (95% CI= 0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.  相似文献   

15.
Temporal models of pitch are based on the assumption that the auditory system measures the time intervals between neural events, and that pitch corresponds to the most common time interval. The current experiments were designed to test whether time intervals are analyzed independently in each peripheral channel, or whether the time-interval analysis in one channel is affected by synchronous activity in other channels. Regular and irregular click trains were filtered into narrow frequency bands to produce target and flanker stimuli. The threshold for discriminating a regular target from an irregular distracter click train was measured in the presence of an irregular masker click train in the target band, as a function of the frequency separation between the target band and a flanker band. The flanker click train was either regular or irregular. The threshold for detecting the regular target was 5-7 dB lower when the flanker was regular. The data indicate that the detection of temporal regularity (and thus, pitch) involves cross-channel processes that can operate over widely separated channels. Model simulations suggest that these cross-channel processes occur after the time-interval extraction stage and that they depend on the similarity, or consistency, of the time-interval patterns in the relevant channels.  相似文献   

16.
Acoustic and concurrent behavioral data from one neonatal male Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) in captivity were presented. The calf click train was first recorded at 22 days postnatal, and the frequency of hydrophone-exploration behavior with head scanning motions in conjunction with emissions of click trains by the calf increased gradually with age. The echolocation clicks in the first recorded click train were indistinguishable from those of adults. Calf echolocation trains were found to decrease in maximum click-repetition rate, duration, and number of clicks per train with age while the minimum click-repetition rate remained more consistent.  相似文献   

17.
Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss.  相似文献   

18.
Sounds from Longman's beaked whale, Indopacetus pacificus, were recorded during shipboard surveys of cetaceans surrounding the Hawaiian Islands archipelago; this represents the first known recording of this species. Sounds included echolocation clicks and burst pulses. Echolocation clicks were grouped into three categories, a 15 kHz click (n?=?106), a 25 kHz click (n?=?136), and a 25 kHz pulse with a frequency-modulated upsweep (n?=?70). The 15 and 25 kHz clicks were relatively short (181 and 144 ms, respectively); the longer 25 kHz upswept pulse was 288 ms. Burst pulses were long (0.5 s) click trains with approximately 240 clicks/s.  相似文献   

19.
Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes.  相似文献   

20.
This study reports the source levels of clicks recorded from free-ranging white-beaked dolphins (Lagenorhynchus albirostris Gray 1846). A four-hydrophone array was used to obtain sound recordings. The hydrophone signals were digitized on-line and stored in a portable computer. An underwater video camera was used to visualize dolphins to help identify on-axis recordings. The range to a dolphin was calculated from differences in arrival times of clicks at the four hydrophones, allowing for calculations of source levels. Source levels in a single click train varied from 194 to 211 dB peak-to-peak (p-p) re: 1 microPa. The source levels varied linearly with the log of range. The maximum source levels recorded were 219 dB (p-p) re: 1 microPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号