首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Echolocating dolphins emit trains of clicks and receive echoes from ocean targets. They often emit each successive ranging click about 20 ms after arrival of the target echo. In echolocation, decisions must be made about the target--fish or fowl, predator or food. In the first test of dolphin auditory decision speed, three bottlenose dolphins (Tursiops truncatus) chose whistle or pulse burst responses to different auditory stimuli randomly presented without warning in rapid succession under computer control. The animals were trained to hold pressure catheters in the nasal cavity so that pressure increases required for sound production could be used to split response time (RT) into neural time and movement time. Mean RT in the youngest and fastest dolphin ranged from 175 to 213 ms when responding to tones and from 213 to 275 ms responding to pulse trains. The fastest neural times and movement times were around 60 ms. The results suggest that echolocating dolphins tune to a rhythm so that succeeding pulses in a train are produced about 20 ms over target round-trip travel time. The dolphin nervous system has evolved for rapid processing of acoustic stimuli to accommodate for the more rapid sound speed in water compared to air.  相似文献   

2.
针对圈养条件下瓶鼻海豚通讯信号(whistle)分类时混叠大量回声定位信号(click)导致分类正确率降低的问题,提出了一种基于机器学习的融合分类方法。分别提取whistle信号的时频分布特征训练随机森林分类器,梅尔时频图特征训练卷积神经网络分类器,在此基础上设计融合判决器对混叠whistle信号进行分类识别。对圈养海豚声信号采集实验数据的分类识别结果表明,融合分类方法具有更好的分类性能,对混叠whistle信号分类正确率大于94%,优于时频分布特征分类器和梅尔时频图特征分类器,能够提高混叠信号的分类能力。   相似文献   

3.
Field recordings of echolocation signals produced by Heaviside's dolphins (Cephalorhynchus heavisidii) were made off the coast of South Africa using a hydrophone array system. The system consisted of three hydrophones and an A-tag (miniature stereo acoustic data-logger). The mean centroid frequency was 125 kHz, with a -3 dB bandwidth of 15 kHz and -10 dB duration of 74 μs. The mean back-calculated apparent source level was 173 dB re 1 μPa(p.-p.). These characteristics are very similar to those found in other Cephalorhynchus species, and such narrow-band high-frequency echolocation clicks appear to be a defining characteristic of the Cephalorhynchus genus. Click bursts with very short inter-click intervals (up to 2 ms) were also recorded, which produced the "cry" sound reported in other Cephalorhynchus species. Since inter-click intervals correlated positively to click duration and negatively to bandwidth, Heaviside's dolphins may adjust their click duration and bandwidth based on detection range. The bimodal distribution of the peak frequency and stable bimodal peaks in spectra of individual click suggest a slight asymmetry in the click production mechanism.  相似文献   

4.
Recordings of the acoustic activity of free-swimming groups of echolocating dolphins increase the likelihood of collecting overlapping click trains, originating from multiple individuals, in the same set of data. In order to evaluate the click properties of each individual based on such recordings it is necessary to identify which clicks originate from which animal. This paper suggests a computationally efficient strategy to separate overlapping click trains originating from multiple free-swimming bottlenose dolphins, enabling echolocation analysis at an individual level on several animals. This technique is based on sequential matching of the frequency spectra of successive clicks. The clicks are grouped together as individual click trains if the correlation coefficients between clicks are higher than a pre-set threshold level. The robustness of the algorithm is tested by adding artificially generated white Gaussian noise and comparing the results with other comparable commonly used methods based on inter-click intervals, centroid frequencies, and amplitude levels. The described method is applicable to a variety of experimental and observational contexts, e.g., those regarding echolocation development of calves, the hypothesized acoustic "etiquette" among dolphins when investigating the same object, and the possible occurrence of eavesdropping in large dolphin pods.  相似文献   

5.
The interclick intervals of captive dolphins are known to be longer than the two-way transit time between the dolphin and a target. In the present study, the interclick intervals of free-ranging baiji, finless porpoises, and bottlenose dolphins in the wild and in captivity were compared. The click intervals in open waters ranged up to 100-200 ms, whereas the click intervals in captivity were in the order of 4-28 ms. Echolocation of free-ranging dolphins appears to adapt to various distance in navigation or ranging, sometimes up to 140 m. Additionally, the difference of waveform characteristics of clicks between species was recognized in the frequency of maximum energy and the click duration.  相似文献   

6.
Sounds from Longman's beaked whale, Indopacetus pacificus, were recorded during shipboard surveys of cetaceans surrounding the Hawaiian Islands archipelago; this represents the first known recording of this species. Sounds included echolocation clicks and burst pulses. Echolocation clicks were grouped into three categories, a 15 kHz click (n?=?106), a 25 kHz click (n?=?136), and a 25 kHz pulse with a frequency-modulated upsweep (n?=?70). The 15 and 25 kHz clicks were relatively short (181 and 144 ms, respectively); the longer 25 kHz upswept pulse was 288 ms. Burst pulses were long (0.5 s) click trains with approximately 240 clicks/s.  相似文献   

7.
Echolocation effort (number and duration of echolocation click trains produced) by a harbor porpoise is described in relation to target presence, strength and distance, and performance of the detection task. The porpoise was presented with two target sizes at five distances (12-20 m), or no target, and had to indicate whether it could detect the target. Small, distant targets required long and multiple click trains. Multiple click trains mostly occurred when the small target was far away and not detected, and during target-absent trials in which the animal correctly responded. In target-absent trials, an incorrect response was linked to short click trains. Click train duration probably increased until the animal's certainty about the target's presence or absence exceeded a certain level, after which the porpoise responded.  相似文献   

8.
There is no information about the whistles of rough-toothed dolphins in the South Atlantic Ocean. This study characterizes the whistle structure of free-ranging rough-toothed dolphins recorded on the Rio de Janeiro coast, southeastern Brazil, and compares it to that of the same species in other regions. A total of 340 whistles were analyzed. Constant (N = 115; 33.8%) and ascending (N = 99; 29.1%) whistles were the most common contours. The whistles recorded had their fundamental frequencies between 2.24 and 13.94 kHz. Whistles without inflection points were frequently emitted (N = 255; 75%). Some signals presented breaks or steps in their contour (N = 97; 28.5%). Whistle duration was short (347 ± 236 ms and 89.7% of the whistles lasted <600 ms). Seventy-eight whistle contour types were found in the total of whistles analyzed, and 27 (7.9%) of these occurred only once. Most of the whistle types were unique to a particular recording session (N = 43). The signals emitted by the rough-toothed dolphins in southeastern Brazil were characterized by low frequency modulation, short duration, low number of inflection points, and breaks. Differences in the mean values of the whistle parameters were found between this and other studies that recorded Steno bredanensis, but as in other localities, whistles above 14 kHz are rare.  相似文献   

9.
Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.  相似文献   

10.
The target strength as a function of aspect angle were measured for four species of fish using dolphin-like and porpoise-like echolocation signals. The polar diagram of target strength values measured from an energy flux density perspective showed considerably less fluctuation with azimuth than would a pure tone pulse. Using detection range data obtained from dolphin and porpoise echolocation experiments, the detection ranges for the Atlantic cod by echolocating dolphins and porpoises were calculated for three aspect angles of the cod. Maximum detection ranges occurred when the fish was broadside to the odontocete and minimum detection ranges occurred when the cod was in the tail aspect. Maximum and minimum detection ranges for the bottlenose dolphin in a noise-limited environment was calculated to be 93 and 70 m, respectively. In a quiet environment, maximum and minimum detection ranges for the bottlenose dolphin were calculated to be 173 and 107 m, respectively. The detection ranges for the harbor porpoise in a quiet environment were calculated to be between 15 and 27 m. The primary reason for the large differences in detection ranges between both species was attributed to the 36 dB higher source level of the bottlenose dolphin echolocation signals.  相似文献   

11.
12.
Hearing sensitivity was measured in a false killer whale during echolocation. Sensitivity was measured using probe stimuli as sinusoidally amplitude modulated signals with a 22.5-kHz carrier frequency and recording auditory evoked potentials as envelope-following responses. The probes were presented and responses were recorded during short 2-s periods when the animal echolocated to detect the presence or absence of a target in a go/no-go paradigm. In the target-absent trials, a hearing threshold of 90.4 dB re 1 muPa was found; in the target-present trials, the threshold was 109.8 dB. Thus, a 19.4-dB difference was found between thresholds in the target-present and target-absent trials. To check the possibility that this difference was the result of different masking degree of the probe by the emitted sonar clicks, click statistics were investigated in similar trials. No indication was found that the energy of the emitted clicks was higher in the target-present than in target-absent trials; on the contrary, mean click level, mean number of clicks per train, and overall train energy was slightly higher in the target-absent trials. Thus the data indicate that the hearing sensitivity of the whale varied depending on target presence or absence.  相似文献   

13.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

14.
A simple passive acoustic monitoring (PAM) setup was used to localize and track beluga whales underwater in three dimensions (3D) in a fjord. In June 2009, beluga clicks were recorded from a cabled hydrophone array in a regularly frequented habitat in Eastern Canada. Beluga click energy was concentrated in the 30-50 kHz frequency band. The click trains detected on several hydrophones were localized from their time difference of arrivals. Cluster analysis linked localizations into tracks based on criteria of spatial and temporal proximity. At close ranges from the array, the localized click-train series allowed three-dimensional tracking of a beluga during its dive. Clicks within a train spanned a large range of durations, inter-click intervals, source levels and bandwidths. Buzzes sometimes terminated the trains. Repeated click packets were frequent. All click characteristics are consistent with oblique observations from the beam axis, and ordered variation of the source pattern during a train, likely resulting from a scan of angles from the beam axis, was observed before click trains indicated focusing of the echolocation clicks in one direction. The click-train series is interpreted as echolocation chasing for preys during a foraging dive. Results show that a simple PAM system can be configured to passively and effectively 3D track wild belugas and small odontocetes in their regularly frequented habitat.  相似文献   

15.
The propagation characteristics of high-frequency echolocation signals (peak energies above 100 kHz) of the beluga (Delphinapterus leucas) were measured while the animal performed a target detection task. The whale was trained to station on a bite plate so that its transmission beam could be measured in the vertical and horizontal planes using hydrophone arrays. The transitional region between the acoustic near- and farfields was also located using an array of hydrophones that extended directly in front of the animal in the horizontal plane. Three distinct modes of signals were observed. Mode 1 signals had click intervals greater than the time required for the signals to travel to the target and back (two-way transit time). Mode 2 signals had click intervals shorter than the two-way transit time, and mode 3 signals had high repetition rates with an average click interval of 1.7 ms, approximately 2% of the two-way transit time. The average click intervals for the modes 1 and 2 signals were 193 and 44 ms, respectively. The vertical and horizontal beam patterns of the mode 1 signals had similar 3-dB beamwidths of approximately 6.5 degrees. The major axis of the vertical beam was directed approximately 5 degrees above the plane defined by the animal's teeth. The near- to farfield transition region was approximately 0.64-0.75 m from the tip of the animal's mouth.  相似文献   

16.
False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America.  相似文献   

17.
A sonar system's echolocation capabilities can be inferred from the ambiguity distribution (defined here in terms of the conventional signal response function) of each of its transmitted signals. Several records of sounds emitted by Hector's dolphin are analyzed. The computed ambiguity distributions indicate that the sonar clicks of Hector's dolphins should be capable of resolving the ranges of targets as close together as 2 cm apart, but that target velocities cannot be resolved to any useful degree from a single echo.  相似文献   

18.
The auditory brainstem response (ABR) response to simulated echolocation clicks was studied in a harbor porpoise, Phocoena phocoena, to determine the relationship between the animal's perceived echo strength and the simulated target distance. In one experiment the click level at the listening post was kept constant while delay was changed, in another, the level was varied to approximate spreading losses. Results of both experiments indicate that there is no automatic gain control in the hearing system of this harbor porpoise.  相似文献   

19.
Conservation of adapting components in auditory-nerve responses   总被引:1,自引:0,他引:1  
The responses of single auditory-nerve fibers of Mongolian gerbil were studied using tonal stimuli. The peristimulatory adaptation of firing rate in response to tone bursts presented in quiet and during a background stimulus is described quantitatively. The total transient response which can be produced to the onset of a tone burst, whether presented in quiet or as an intensity increment, is limited and appears to demonstrate a form of conservation. Specifically, the total numbers of spikes produced by the rapidly adapting component, and the slower short-term adaptation component, are proportional at all intensities, and are limited for each fiber. Furthermore, when an incremental stimulus is presented on a background, the total transient response to the background and to the increment is limited and depends upon the final intensity, not the background intensity. When the presumed underlying synaptic drive is derived by removing the effects of refractoriness from the spike train, the same conservation of the transient response components, and proportionality between rapid and short-term components, are observed.  相似文献   

20.
A set of dolphin echolocation clicks collected from an Atlantic bottlenose dolphin in Kaneohe Bay, Hawai'i from a previous experiment is examined in terms of their time and frequency characteristics. The center frequency and rms bandwidth are calculated for the clicks and these are clustered into four classes by using a model based on the Bayesian information criterion. The echo signatures are attained from a solid, elastic homogeneous sphere for each class of clicks from an acoustic scattering model. The results from the scattering model are compared to experimental values. The joint time-frequency content of the resulting echo signals is obtained by the reduced interference distribution (RID). The RIDs are plotted and examined for each signal class for four spherical targets of different material compositions. RID correlation values are obtained for a standard target versus comparison targets by using a time-frequency correlator. The results suggest that dolphins may discriminate by auditory inspection of the time-frequency information returned by the targets. The modification of the outgoing clicks and examination of time-frequency target information may be fundamental to a dolphin's ability to identify and discriminate targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号