首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

2.
In the present paper, we consider an abstract partial differential equation of the form $\frac{{\partial ^2 u}}{{\partial t^2 }} - \frac{{\partial ^2 u}}{{\partial x^2 }} + A\left( {x,t} \right)u = f\left( {x,t} \right)$ , where $\left\{ {A\left( {x,t} \right):\left( {x,t} \right) \in \bar G} \right\}$ is a family of linear closed operators and $\bar G = G \cup \partial G,G$ is a suitable bounded region in the (x, t)-plane with boundary?G. It is assumed thatu is given on the boundary?G. The objective of this paper is to study the considered Dirichlet problem for a wide class of operatorsA(x, t). A Dirichlet problem for non-elliptic partial differential equations of higher orders is also considered.  相似文献   

3.
For an equation of the form $$\begin{gathered} \frac{{\partial u}}{{\partial t}} - \sum\nolimits_{ij = 1}^n {{\text{ }}\alpha ^{ij} } \frac{{\partial ^2 u}}{{\partial x^i \partial x^j }} + \sum\nolimits_{ij = 1}^n {\beta _j^i x^i } \frac{{\partial u}}{{\partial x^i }} = 0, \hfill \\ {\text{ }}x \in R^n ,{\text{ }}t \in R^1 , \hfill \\ \end{gathered}$$ where α=(αij) is a constant nonnegative matrix andΒ=(Β i i ) is a constant matrix, subject to certain conditions, we construct a fundamental solution, similar in its structure to the fundamental solution of the heat conduction equation; we prove a mean value theorem and show that u(x0, t0) can be represented in the form of the mean value of u(x, t) with a nonnegative density over a level surface of the fundamental solution of the adjoint equation passing through the point (x0, t0); finally, we prove a parabolic maximum principle.  相似文献   

4.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

5.
We investigate the initial-boundary value problem for the nonlinear equation system $$\frac{{\partial u}}{{\partial t}} = A\frac{{\partial ^2 u}}{{\partial x^2 }} + f(u) + g(u)\frac{{\partial u}}{{\partial x}},$$ whereA is a complex diagonal matrix,f andg are complex vector-functions. The convergence and stability in theW 2 2 norm of the proposed Crank-Nicolson type difference schemes is proved. No restrictions on the ratio of time and space grid steps are assumed.  相似文献   

6.
For the system of Navier-Stokes-Voigt equations $$\frac{{\partial \vec v}}{{\partial t}} - v\Delta \vec v - \aleph \frac{{\partial \Delta \vec v}}{{\partial t}} + v_\kappa \frac{{\partial \Delta \vec v}}{{\partial x_\kappa }} + grad \rho = 0, div \vec v = 0$$ and the BBM equation $$\frac{{\partial v}}{{\partial t}} + v\frac{{\partial \Delta v}}{{\partial x}} - \frac{{\partial ^3 v}}{{\partial t\partial x^2 }} = 0$$ characteristic functions \(\mathcal{F}\left( {\vec \theta ;t} \right)\) of the measure μt(ω)=μ(V ?1 t (ω)), describing the evolution in time of the probability measure μ(ω) defined on the set of initial conditions for the first initial boundary-value problem for system (1) or Eq. (2) are constructed and investigated. It is shown that the characteristic functions \(\mathcal{F}\left( {\vec \theta ;t} \right)\) constructed satisfy partial differential equations with an infinite number of independent variables (t; θ12,...) [the statistical equations of E. Hopf for the system (1) or Eq. (2)].  相似文献   

7.
The first and the second boundary value problems for a system of nonlinear equations of Schrödinger type $$\frac{{\partial u}}{{\partial t}} = A\frac{{\partial u}}{{\partial x}} + iB\frac{{\partial ^2 u}}{{\partial x^2 }} + f\left( {u, u*} \right)$$ are investigated. HereA andB are real and real positive definite, respectively, constant diagonal matrices, f is a polynomial complex vector function. We do not try to get rid of the addend A?u/?x. Using a new type ofa priori estimates, convergence and stability of difference schemes of Crank-Nicolson type for these problems in W 2 1 norm are proved. No restrictions on the ratio of time and space grid steps are assumed.  相似文献   

8.
One proves the global unique solvability in class \(W_\infty ^1 (0,T;C^{2,d} (\bar \Omega ) \cap H(\Omega ))\) of the initial-boundary-value problem for the quasilinear system $$\frac{{\partial \vec \upsilon }}{{\partial t}} + \upsilon _k \frac{{\partial \vec \upsilon }}{{\partial x_k }} - \mu _1 \frac{{\partial \Delta \vec \upsilon }}{{\partial t}} - \int\limits_0^t {K(t - \tau )\Delta \vec \upsilon (\tau )d\tau + grad p = \vec f,di\upsilon \bar \upsilon = 0,\upsilon , > 0.}$$ This system described the nonstationary flows of the elastic-viscous Kelvin-Voigt fluids with defining relation $$\left( {1 + \sum\limits_{\ell = 1}^L {\lambda _\ell } \frac{{\partial ^\ell }}{{\partial t^\ell }}} \right)\sigma = 2\left( {v + \sum\limits_{m = 1}^{L + 1} {\user2{\ae }_m } \frac{{\partial ^m }}{{\partial t^m }}} \right)D,L = 0,1,2,...;\lambda _L ,\user2{\ae }_{L + 1} > 0.$$   相似文献   

9.
In this paper,we consider the following nonlinear wave equations:(■~2φ)/(■t~2)-(■~2φ)/(■x~2)+μ~2φ+v~2x~2φ+f(|φ|~2)φ=0,(■~2x)/(■t~2-(■~2X)/(■X~2)+α~2x+α~2x+v~2x|φ|~2+g(X)=0with the periodic-initial conditions:φ(x-π,t)=φ(x+π,t),x(x-π,t)=x(x+v,t),φ(x,0)=■_0(x),φ_t(x,0)=■_1(x),X(x,0)=■_0(x),x_t(x,0)=■_1(x),-∞相似文献   

10.
At first Cauchy-problem for the equation: \(L[u(X,t)] \equiv \sum\limits_{i = 1}^n {\frac{{\partial ^2 u}}{{\partial x_1^2 }} + \frac{{2v}}{{\left| X \right|^2 }}} \sum\limits_{i = 1}^n {x_i \frac{{\partial u}}{{\partial x_i }} - \frac{{\partial u}}{{\partial t}} = 0} \) wheren≥1,v—an arbitrary constant,t>0,X=(x 1, …, xn)∈E n/{0}, |X|= =(x 1 2 +…+x n 2 )1/2, with 0 being a centre of coordinate system, is studied. Basing on the above, the solution of Cauchy-Nicolescu problem is given which consist in finding a solution of the equationL p [u (X, t)]=0, withp∈N subject the initial conditions \(\mathop {\lim }\limits_{t \to \infty } L^k [u(X,t)] = \varphi _k (X)\) ,k=0, 1,…,p?1 and ?k(X) are given functions.  相似文献   

11.
A direct construction is given of a functionf(x1, x2) ∈ C°, such that the equation $$\frac{{\partial u}}{{\partial x_1 }} + ix_1^{2k - 1} \frac{{\partial u}}{{\partial x_2 }} = f$$ has no solution in any neighborhood of the origin; the functionf and all its derivatives vanish for x1=0.  相似文献   

12.
The following uniformly elliptic equation is considered: $$\sum {\tfrac{\partial }{{\partial x_i }}a_{ij} (x)\tfrac{{\partial u}}{{\partial x_j }} = f(x,u,\nabla u)} , x \in \Omega \subset R^n ,$$ with measurable coefficients. The function f satisfies the condition $$f(x, u, \nabla u) u \geqslant C|u|^{\beta _1 + 1} |\nabla u|^{\beta _1 } , \beta _1 > 0, 0 \leqslant \beta _2 \leqslant 2, \beta _1 + \beta _2 > 1$$ . It is proved that if u(x) is a generalized (in the sense of integral identity) solution in the domain ΩK, where the compactum K has Hausdorff dimension α, and if \(\frac{{2\beta _1 + \beta _2 }}{{\beta _1 + \beta _2 - 1}}< n - \alpha \) , u(x) will be a generalized solution in the domain ω. Moreover, the sufficient removability conditions for the singular set are, in some sense, close to the necessary conditions.  相似文献   

13.
The uniqueness of solutions for Cauchy problem of the form $$\frac{{\partial u}}{{\partial t}} = \Delta A(u) + \sum\limits_{i = 1}^N {\frac{{\partial b^i (u)}}{{\partial x_i }} + c(u)} $$ is studied. It is proved that ifuBVx and A(u) is strictly increasing, the solution is unique.  相似文献   

14.
Let Ω ? 0 be an open bounded domain in R N (N ≥ 3) and $2^* (s) = \tfrac{{2(N - s)}} {{N - 2}}$ , 0 < s < 2. We consider the following elliptic system of two equations in H 0 1 (Ω) × H 0 1 (Ω): $$- \Delta u - t\frac{u} {{\left| x \right|^2 }} = \frac{{2\alpha }} {{\alpha + \beta }}\frac{{\left| u \right|^{\alpha - 2} u\left| v \right|^\beta }} {{\left| x \right|^s }} + \lambda u, - \Delta v - t\frac{v} {{\left| x \right|^2 }} = \frac{{2\beta }} {{\alpha + \beta }}\frac{{\left| u \right|^\alpha \left| v \right|^{\beta - 2} v}} {{\left| x \right|^s }} + \mu v,$$ where λ, µ > 0 and α, β > 1 satisfy α + β = 2*(s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain-Pass theorem, we establish the existence of solutions.  相似文献   

15.
We describe the asymptotics of the spectrum of the operator $$ \hat H\left( {x, - \imath h\frac{\partial } {{\partial x}}} \right) = - h^2 \frac{{\partial ^2 }} {{\partial x^2 }} + \imath \left( {\cos x + \cos 2x} \right) $$ as h → 0 and show that the spectrum concentrates near some graph on the complex plane. We obtain equations for the eigenvalues, which are conditions on the periods of a holomorphic form on the corresponding Riemannian surface.  相似文献   

16.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

17.
In this paper we consider the problem of the approximation of the integral of a smooth enough function f(x,y) on the standard simplex $\Delta _{2} \subset \mathbb{R}^{2}$ by cubature formulas of the following kind: $${\int\limits_{\Delta _{2} } {f{\left( {x,y} \right)}dxdy} } = {\sum\limits_{\alpha = 1}^3 {{\sum\limits_{i,j} {A_{{\alpha ij}} \frac{{\alpha ^{{i + j}} }}{{\alpha x^{i} \alpha y^{j} }}f{\left( {x_{\alpha } ,y_{\alpha } } \right)} + E{\left( f \right)}} }} }$$ where the nodes $\left( x_{\alpha},y_{\alpha}\right) ,\alpha=1,2,3$ are the vertices of the simplex. Such kind of quadratures belong to a more general class of formulas for numerical integration, which are called boundary-type quadrature formulas. We discuss three classes of such formulas that are exact for algebraic polynomials and generate embedded pairs. We give bounds for the truncation errors and conditions for convergence. Finally, we show how to organize an algorithm for the automatic computation of the quadratures with estimate of the errors and provide some numerical examples.  相似文献   

18.
More work is done to study the explicit, weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: $$\begin{gathered} u_t = ( - 1)^{M + 1} A(x,t,u, \cdots ,u_x M - 1)u_x 2M + f(x,t,u, \cdots u_x 2M - 1), \hfill \\ (x,t) \in Q_T = \left| {0< x< l,0< t \leqslant T} \right|, \hfill \\ u_x ^k (0,t) = u_x ^k (l,t) = 0 (k = 0,1, \cdots ,M - 1),0< t \leqslant T, \hfill \\ u(x,0) = \varphi (x),0 \leqslant x \leqslant l, \hfill \\ \end{gathered} $$ whereu, ?, andf arem-dimensional vector valued functions, A is anm×m positively definite matrix, and $u_t = \frac{{\partial u}}{{\partial t}},u_x ^k = \frac{{\partial ^k u}}{{\partial x^k }}$ . For this problem, the convergence of iteration for the general difference schemes is proved.  相似文献   

19.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

20.
We consider a first boundary problem for the nonlinear Schrödinger equation $$\frac{{\partial u}}{{\partial t}} = ia\frac{{\partial ^2 u}}{{\partial x^2 }} + f(u,u*)u.$$ The convergence of a three-layer explicit difference scheme in theC andW 1 2 norms is proved. The stability of the scheme with respect to the initial data in the same norms is proved. To justify the convergence and stability we use grid analogues of the energy-preservation laws and grid multiplicative inequalities. The relation 2|a|τ/h 2≤ν<1 is assumed for the grid stepsizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号