首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We describe the development of force field parameters for methylated lysines and arginines, and acetylated lysine for the CHARMM all‐atom force field. We also describe a CHARMM united‐atom force field for modified sidechains suitable for use with fragment‐based docking methods. The development of these parameters is based on results of ab initio quantum mechanics calculations of model compounds with subsequent refinement and validation by molecular mechanics and molecular dynamics simulations. The united‐atom parameters are tested by fragment docking to target proteins using the MCSS procedure. The all‐atom force field is validated by molecular dynamics simulations of multiple experimental structures. In both sets of calculations, the computational predictions using the force field were compared to the corresponding experimental structures. We show that the parameters yield an accurate reproduction of experimental structures. Together with the existing CHARMM force field, these parameters will enable the general modeling of post‐translational modifications of histone tails. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
The GPR119 receptor is a class A G protein‐coupled receptor expressed mainly in pancreatic beta cells. Since GPR119 receptor activation ameliorates Type 2 Diabetes through an increase in glucose‐dependent insulin release, the development of new GPR119 receptor agonists would be worthwhile. A better understanding of the way agonists interact with the receptor would help to design better ligands for the receptor. It also would help to better understand the agonist mechanism of action. An understanding of how agonists interact with the receptor can be acquired using molecular dynamics simulations, which cannot be performed without having force field parameters for the ligand molecule. This study presents the development of CHARMM force field parameters for AR231453, the prototypical first potent and orally available GPR119 agonist, using the Force Field Tool Kit. The parameters are validated through Normal Mode Analysis calculations and molecular dynamics simulations in combination with infrared spectroscopy. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.  相似文献   

4.
We evaluate an empirical potential energy function and associated parameters for classical molecular dynamics simulations of lecithins, a common class of lipid. The physical accuracy of the force field was tested through its application to molecular dynamics simulations of the known crystal structures of lipid molecules. Average atomic positions and molecular conformation are well maintained during the simulations despite considerable thermal motion. Calculated isotropic temperature factors correlate highly with those from experiment.  相似文献   

5.
We describe the development of the AMBER force field parameters for 46 nucleases involving most kinds of copper nucleases with high DNA affinities and specificities by MINA approach that could evaluate accurate force constants for batch bonds/angles on the basis of energies of three adjacent lengths/angles geometries. The molecular mechanics (MM) and molecular dynamic simulations on adducts of the 21 representative copper-based nucleases with DNA are in excellent agreement with those of experimental results. Furthermore, to validate the evaluated parameters, the studied structures performed frequency analysis together with normal mode calculations in quantum mechanics and MM calculations. The force field parameters evaluated in this work provide an extension of AMBER force field, and the results of molecular dynamics simulations of adduct of copper nuclease and duplex DNA illustrate the potential utility of these parameters.  相似文献   

6.
The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 micros MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 micros MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.  相似文献   

7.
The reliability of molecular simulations largely depends on the quality of the empirical force field parameters. Force fields used in lipid simulations continue to be improved to enhance the agreement with experiments for a number of different properties. In this work, we have carried out molecular dynamics simulations of neat DMPC bilayers using united‐atom Berger force field and three versions of all‐atom CHARMM force fields. Three different systems consisting of 48, 72, and 96 lipids were studied. Both particle mesh Ewald (PME) and spherical cut‐off schemes were used to evaluate the long‐range electrostatic interactions. In total, 21 simulations were carried out and analyzed to find out the dependence of lipid properties on force fields, system size, and schemes to calculate long‐range interactions. The acyl chain order parameters calculated from Berger and the recent versions of CHARMM simulations have shown generally good agreement with the experimental results. However, both sets of force fields deviate significantly from the experimentally observed P‐C dipolar coupling values for the carbon atoms that link the choline and glycerol groups with the phosphate groups. Significant differences are also observed in several headgroup parameters between CHARMM and Berger simulations. Our results demonstrate that when changes were introduced to improve CHARMM force field using PME scheme, all the headgroup parameters have not been reoptimized. The headgroup properties are likely to play a significant role in lipid–lipid, protein–lipid, and ligand–lipid interactions and hence headgroup parameters in phospholipids require refinement for both Berger and CHARMM force fields. © 2009 Wiley Periodicals, Inc.J Comput Chem, 2010  相似文献   

8.
We have developed new force field and parameters for copper(I) and mercury(II) to be used in molecular dynamics simulations of metalloproteins. Parameters have been derived from fitting of ab initio interaction potentials calculated at the MP2 level of theory, and results compared to experimental data when available. Nonbonded parameters for the metals have been calculated from ab initio interaction potentials with TIP3P water. Due to high charge transfer between Cu(I) or Hg(II) and their ligands, the model is restricted to a linear coordination of the metal bonded to two sulfur atoms. The experimentally observed asymmetric distribution of metal ligand bond lengths (r) is accounted for by the addition of an anharmonic (r3) term in the potential. Finally, the new parameters and potential, introduced into the CHARMM force field, are tested in short molecular dynamics simulations of two metal thiolates fragments in water. (Brooks BR et al. J Comput Chem 1983, 4, 1987.1).  相似文献   

9.
Macrolides are an important class of antibiotics that target the bacterial ribosome. Computer simulations of macrolides are limited as specific force field parameters have not been previously developed for them. Here, we determine CHARMM‐compatible force field parameters for erythromycin, azithromycin, and telithromycin, using the force field toolkit (ffTK) plugin in VMD. Because of their large size, novel approaches for parametrizing them had to be developed. Two methods for determining partial atomic charges, from interactions with TIP3P water and from the electrostatic potential, as well as several approaches for fitting the dihedral parameters were tested. The performance of the different parameter sets was evaluated by molecular dynamics simulations of the macrolides in ribosome, with a distinct improvement in maintenance of key interactions observed after refinement of the initial parameters. Based on the results of the macrolide tests, recommended procedures for parametrizing very large molecules using ffTK are given. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ significantly in regard to the nonbonded parameters for polar functional groups and their ability to reproduce the correct solvation and partitioning behavior of small molecular analogues of the amino acid side chains. Despite the differences in the force field parameters no major differences could be detected in a wide range of structural properties such as the root-mean-square deviation from the experimental structure, radii of gyration, solvent accessible surface, secondary structure, or hydrogen bond propensities on a 5 to 10 ns time scale. The small differences that were observed correlated primarily with the presence of charged residues as opposed to residues that differed most between the parameter sets. The work highlights the variation that can be observed in nanosecond simulations of protein systems and implications of this for force field validation, as well as for the analysis of protein simulations in general.  相似文献   

11.
This article presents a new ab initio force field for the cofactors of bacterial photosynthesis, namely quinones and bacteriochlorophylls. The parameters has been designed to be suitable for molecular dynamics simulations of photosynthetic proteins by being compatible with the AMBER force field. To our knowledge, this is the first force field for photosynthetic cofactors based on a reliable set of ab initio density functional reference data for methyl bacteriochlorophyll a, methyl bacteriopheophytin a, and of a derivative of ubiquinone. Indeed, the new molecular mechanics force field is able to reproduce very well not only the experimental and ab initio structural properties and the vibrational spectra of the molecules, but also the eigenvectors of the molecular normal modes. For this reason it might also be helpful to understand vibrational spectroscopy results obtained on reaction center proteins.  相似文献   

12.
The multistate empirical valence bond (MS-EVB) model, which was developed for molecular dynamics simulations of proton transport in water and biomolecular systems, is extended for the modeling of protonatable amino acid residues in aqueous environments, specifically histidine and glutamic acid. The parameters of the MS-EVB force field are first determined to reproduce the geometries and energetics of the gas phase amino acid-water clusters. These parameters are then optimized to reproduce experimental pK(a) values. The free energy profiles for acid ionization and the corresponding pK(a) values are calculated by MS-EVB molecular dynamics simulations utilizing the umbrella sampling technique, with the center of excess charge coordinate chosen as the dissociation reaction coordinate. A general procedure for fitting the MS-EVB parameters is formulated, which allows for the parametrization of other amino acid residues with protonatable groups and the subsequent use of the MS-EVB approach for molecular dynamics simulations of proton transfer processes in proteins involving protonation/deprotonation of the protonatable amino acid groups.  相似文献   

13.
A new, condensed-phase optimised ab-initio force field, COMPASS, has been developed recently. In this paper, the validation of COMPASS for phosphazenes is presented. The functional forms of this force field are of the consistent force field (CFF) type. Charges and bonded terms were derived from HF/6–31G1 calculations, while the nonbonded parameters (L-J 9-6 vdW potential) were initially transferred from the polymer consistent force field, pcff, and optimised using MD simulations of condensed-phase properties. As a validation of COMPASS, molecular mechanics calculations and molecular dynamics simulations have been made on a number of isolated molecules, liquids, and crystals. The calculated molecular structure, vibration frequencies, conformational properties for isolated molecules, crystal cell parameters and density, liquid density, and heat of evaporation agreed favourably with most experimental data. The special conformational properties of the tetracyclophosphazenes, (NPCI2)4 and (NPF2)4, in the solid state are discussed based on molecular mechanics and CASTEP ab-initio calculations. The effect of nonbonded cutoff distance and different algorithms for pressure control in NPT simulation was also investigated. Finally, molecular dynamics using the COMPASS force field was used to predict properties of three isomers of high-molecular-weight amorphous poly(dibutoxyphosphazenes). In this case, excellent agreement was achieved between densities and glass transition temperatures obtained from dynamics and experimental data.  相似文献   

14.
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies.  相似文献   

15.
16.
Ionic liquids (ILs) have been widely used in separation, catalysis, electrochemistry, etc., and one of the most outstanding characteristics is that ILs can be tailored and tuned for specific tasks. In order to design and make better use of ionic liquids, the structures and properties relationship is indispensable. Both molecular dynamics and Monte Carlo simulations have been proved useful to understand the behavior of molecules at the microscale and the properties of the system. However, the quality of such simulations depends on force field parameters describing the interactions between atoms. All-atom (AA) or the united-atom (UA) force fields will be chosen because of the demand for more exact results or the lower computational cost, respectively. In order to make a systematic comparison of the two force fields, molecular simulations for four kinds of acyclic guanidinium-based ionic liquids (cations: (R2N)2C=N+<, anion: nitric or perchloric acid) were performed based on the AA and the UA force fields in this work. AA force field parameters were derived from our previous work (Fluid Phase Equilib., 2008, 272: 1-7), and the UA parameters were proposed in this work. Molecular dynamics simulation results for the AA and UA force fields were compared. Simulation densities are very similar to each other. Center of mass radial distribution functions (RDFs), site to site RDFs and spatial distribution functions (SDFs) were also investigated to depict the microscopic structures of the ILs.  相似文献   

17.
Congo red, a diazo dye widely used in medical diagnosis, is known to form supramolecular systems in solution. Such a supramolecular system may interact with various proteins. In order to examine the nature of such complexes empirical force field parameters for the Congo red molecule were developed. The parametrization of bonding terms closely followed the methodology used in the development of the charmm22 force field, except for the calculation of charges. Point charges were calculated from a fit to a quantum mechanically derived electrostatic potential using the CHELP-BOW method. Obtained parameters were tested in a series of molecular dynamics simulations of both a single molecule and a micelle composed of Congo red molecules. It is shown that newly developed parameters define a stable minimum on the hypersurface of the potential energy and crystal and ab initio geometries and rotational barriers are well reproduced. Furthermore, rotations around C-N bonds are similar to torsional vibrations observed in crystals of diphenyl-diazene, which confirms that the flexibility of the molecule is correct. Comparison of results obtained from micelles molecular dynamics simulations with experimental data shows that the thermal dependence of micelle creation is well reproduced.  相似文献   

18.
Photosystem II is a complex protein–cofactor machinery that splits water molecules into molecular oxygen, protons, and electrons. All‐atom molecular dynamics simulations have the potential to contribute to our general understanding of how photosystem II works. To perform reliable all‐atom simulations, we need accurate force field parameters for the cofactor molecules. We present here CHARMM bonded and non‐bonded parameters for the iron‐containing cofactors of photosystem II that include a six‐coordinated heme moiety coordinated by two histidine groups, and a non‐heme iron complex coordinated by bicarbonate and four histidines. The force field parameters presented here give water interaction energies and geometries in good agreement with the quantum mechanical target data. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
Extensive density functional theory (DFT) calculations have been performed to develop a force field for the classical molecular dynamics (MD) simulations of various azobenzene derivatives. Besides azobenzene, we focused on a thiolated azobenzene’s molecular rod (4′-{[(1,1′-biphenyl)-4-yl]diazenyl}-(1,1′-biphenyl)-4-thiol) that has been previously demonstrated to photoisomerize from trans to cis with high yields on surfaces. The developed force field is an extension of OPLS All Atoms, and key bonding parameters are parameterized to reproduce the potential energy profiles calculated by DFT. For each of the parameterized molecule, we propose three sets of parameters: one best suited for the trans configuration, one for the cis configuration, and finally, a set able to describe both at a satisfactory degree. The quality of the derived parameters is evaluated by comparing with structural and vibrational experimental data. The developed force field opens the way to the classical MD simulations of self-assembled monolayers (SAMs) of azobenzene’s molecular rods, as well as to the quantum mechanics/molecular mechanics study of photoisomerization in SAMs.  相似文献   

20.
We present the theoretical evaluation of new AMBER force field parameters for 12 copper-based nucleases with bis(2-pyridylmethyl) amine, 2,2′-dipyridylamine, imidazole, N,N-bis(2-benzimidazolylmethyl) amine and their derivative ligands based on first-principles electronic structure calculations at the B3LYP level of theory. A three-point approach was developed to accurately and efficiently evaluate the force field parameters for the copper-based nucleases with the ligands. The protocol of RESP atomic charges has been used to calculate the atomic charge distributions of the studied copper-based nucleases. The evaluated force field parameters and RESP atomic charges have been successfully applied in the testing molecular mechanics calculations and molecular dynamics simulations on the nucleases and the nuclease–DNA complexes, respectively. It has been demonstrated that the developed force field parameters and atomic charges can consistently reproduce molecular geometries and conformations in the available X-ray crystal structures and can reasonably predict the interaction properties of the nucleases with DNA. The developed force field parameters in this work provide an extension of the AMBER force field for its application to computational modeling and simulations of the copper-based artificial nucleases associated with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号