首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

2.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

3.
We give, as L grows to infinity, an explicit lower bound of order \({L^{\frac{n}{m}}}\) for the expected Betti numbers of the vanishing locus of a random linear combination of eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint pseudo-differential operator of order \({m > 0}\), bounded from below and acting on the sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M equipped with some Lebesgue measure. In fact, for every closed hypersurface \({\Sigma}\) of \({\mathbb{R}^n}\), we prove that there exists a positive constant \({p_\Sigma}\) depending only on \({\Sigma}\), such that for every large enough L and every \({x \in M}\), a component diffeomorphic to \({\Sigma}\) appears with probability at least \({p_\Sigma}\) in the vanishing locus of a random section and in the ball of radius \({L^{-\frac{1}{m}}}\) centered at x. These results apply in particular to Laplace–Beltrami and Dirichlet-to-Neumann operators.  相似文献   

4.
We study the determinant \({\det(I-\gamma K_s), 0 < \gamma < 1}\) , of the integrable Fredholm operator K s acting on the interval (?1, 1) with kernel \({K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}\) . This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature \({\beta=2}\) , in the presence of an external potential \({v=-\frac{1}{2}\ln(1-\gamma)}\) supported on an interval of length \({\frac{2s}{\pi}}\) . We evaluate, in particular, the double scaling limit of \({\det(I-\gamma K_s)}\) as \({s\rightarrow\infty}\) and \({\gamma\uparrow 1}\) , in the region \({0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}\) , for any fixed \({0 < \delta < 1}\) . This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).  相似文献   

5.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

6.
It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10}\times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).  相似文献   

7.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

8.
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form \({\gamma=(\langle u_i,v_j\rangle)_{i,j=1}^n}\), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of \({\alpha=\frac{m}{n}}\), where the previous vectors are sampled according to the Haar measure in the unit sphere of \({\mathbb R^m}\). In particular, we prove the existence of an \({\alpha_0 > 0}\) such that if \({\alpha\leq \alpha_0}\), \({\gamma}\) is nonlocal with probability tending to 1 as \({n\rightarrow \infty}\), while for \({\alpha > 2}\), \({\gamma}\) is local with probability tending to 1 as \({n\rightarrow \infty}\).  相似文献   

9.
There is a general method for constructing a soliton hierarchy from a splitting \({{L_{\pm}}}\) of a loop group as positive and negative sub-groups together with a commuting linearly independent sequence in the positive Lie algebra \({\mathcal{L}_{+}}\). Many known soliton hierarchies can be constructed this way. The formal inverse scattering associates to each f in the negative subgroup \({L_-}\) a solution \({u_{f}}\) of the hierarchy. When there is a 2 co-cycle of the Lie algebra that vanishes on both sub-algebras, Wilson constructed a tau function \({\tau_{f}}\) for each element \({f \in L_-}\). In this paper, we give integral formulas for variations of \({\ln\tau_{f}}\) and second partials of \({\ln\tau_{f}}\), discuss whether we can recover solutions \({u_{f}}\) from \({\tau_{f}}\), and give a general construction of actions of the positive half of the Virasoro algebra on tau functions. We write down formulas relating tau functions and formal inverse scattering solutions and the Virasoro vector fields for the \({GL(n,\mathbb{C})}\)-hierarchy.  相似文献   

10.
The spectrum of a semi-infinite quantum graph tube with square period cells is analyzed. The structure is obtained by rolling up a doubly periodic quantum graph into a tube along a period vector and then retaining only a semi-infinite half of the tube. The eigenfunctions associated to the spectrum of the half-tube involve all Floquet modes of the full tube. This requires solving the complex dispersion relation \({D(\lambda,k_1,k_2)=0}\) with \({(k_1,k_2)\in(\mathbb{C}/2\pi\mathbb{Z})^2}\) subject to the constraint \({a k_1 + bk_2 \equiv 0}\) (mod \({2\pi}\)), where a and b are integers. The number of Floquet modes for a given \({\lambda\in\mathbb{R}}\)  is  \({2\max\left\{ a, b \right\}}\). Rightward and leftward modes are determined according to an indefinite energy flux form. The spectrum may contain eigenvalues that depend on the boundary conditions, and some eigenvalues may be embedded in the continuous spectrum.  相似文献   

11.
Let \({T=\mathbb R^d}\) . Let a function \({QT^2\to\mathbb C}\) satisfy \({Q(s,t)=\overline{Q(t,s)}}\) and \({|Q(s,t)|=1}\). A generalized statistics is described by creation operators \({\partial_t^\dagger}\) and annihilation operators ? t , \({t\in T}\), which satisfy the Q-commutation relations: \({\partial_s\partial^\dagger_t = Q(s, t)\partial^\dagger_t\partial_s+\delta(s, t)}\) , \({\partial_s\partial_t = Q(t, s)\partial_t\partial_s}\), \({\partial^\dagger_s\partial^\dagger_t = Q(t, s)\partial^\dagger_t\partial^\dagger_s}\). From the point of view of physics, the most important case of a generalized statistics is the anyon statistics, for which Q(s, t) is equal to q if s < t, and to \({\bar q}\) if s > t. Here \({q\in\mathbb C}\) , |q| = 1. We start the paper with a detailed discussion of a Q-Fock space and operators \({(\partial_t^\dagger,\partial_t)_{t\in T}}\) in it, which satisfy the Q-commutation relations. Next, we consider a noncommutative stochastic process (white noise) \({\omega(t)=\partial_t^\dagger+\partial_t+\lambda\partial_t^\dagger\partial_t}\) , \({t\in T}\) . Here \({\lambda\in\mathbb R}\) is a fixed parameter. The case λ = 0 corresponds to a Q-analog of Brownian motion, while λ ≠ 0 corresponds to a (centered) Q-Poisson process. We study Q-Hermite (Q-Charlier respectively) polynomials of infinitely many noncommutatative variables \({(\omega(t))_{t\in T}}\) . The main aim of the paper is to explain the notion of independence for a generalized statistics, and to derive corresponding Lévy processes. To this end, we recursively define Q-cumulants of a field \({(\xi(t))_{t\in T}}\). This allows us to define a Q-Lévy process as a field \({(\xi(t))_{t\in T}}\) whose values at different points of T are Q-independent and which possesses a stationarity of increments (in a certain sense). We present an explicit construction of a Q-Lévy process, and derive a Nualart–Schoutens-type chaotic decomposition for such a process.  相似文献   

12.
We study the long time dynamics of the Schrödinger equation on Zoll manifolds. We establish criteria under which the solutions of the Schrödinger equation can or cannot concentrate on a given closed geodesic. As an application, we derive some results on the set of semiclassical measures for eigenfunctions of Schrödinger operators: we prove that adding a potential \({V \in C^{\infty} (\mathbb{S}^{d})}\) to the Laplacian on the sphere results in the existence of geodesics \({\gamma}\) such that the uniform measure supported on \({\gamma}\) cannot be obtained as a weak-\({\star}\) accumulation point of the densities \({(|\psi_{n}|^{2} {vol}_{\mathbb{S}^d})}\) for any sequence of eigenfunctions \({(\psi_n)}\) of \({\Delta_{\mathbb{S}^{d}} - V}\). We also show that the same phenomenon occurs for the free Laplacian on certain Zoll surfaces.  相似文献   

13.
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces \({\mathbb {R}}^{N_1} \times _{\mathcal {R}} {\mathbb {R}}^{N_2}\). These coordinate algebras are quadratic ones associated with an \(\mathcal {R}\)-matrix which is involutive and satisfies the Yang–Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces \({\mathbb {R}}^{4} \times _{\mathcal {R}} {\mathbb {R}}^{4}\). Among these, particularly well behaved ones have deformation parameter \(\mathbf{u} \in {\mathbb {S}}^2\). Quotients include seven spheres \({\mathbb {S}}^{7}_\mathbf{u}\) as well as noncommutative quaternionic tori \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u} = {\mathbb {S}}^3 \times _\mathbf{u} {\mathbb {S}}^3\). There is invariance for an action of \({{\mathrm{SU}}}(2) \times {{\mathrm{SU}}}(2)\) on the torus \({\mathbb {T}}^{{\mathbb {H}}}_\mathbf{u}\) in parallel with the action of \(\mathrm{U}(1) \times \mathrm{U}(1)\) on a ‘complex’ noncommutative torus \({\mathbb {T}}^2_\theta \) which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.  相似文献   

14.
We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.  相似文献   

15.
We prove that if an initial datum to the incompressible Navier–Stokes equations in any critical Besov space \({\dot B^{-1+\frac 3p}_{p,q}({\mathbb {R}}^{3})}\), with \({3 < p, q < \infty}\), gives rise to a strong solution with a singularity at a finite time \({T > 0}\), then the norm of the solution in that Besov space becomes unbounded at time T. This result, which treats all critical Besov spaces where local existence is known, generalizes the result of Escauriaza et al. (Uspekhi Mat Nauk 58(2(350)):3–44, 2003) concerning suitable weak solutions blowing up in \({L^{3}({\mathbb R}^{3})}\). Our proof uses profile decompositions and is based on our previous work (Gallagher et al., Math. Ann. 355(4):1527–1559, 2013), which provided an alternative proof of the \({L^{3}({\mathbb R}^{3})}\) result. For very large values of p, an iterative method, which may be of independent interest, enables us to use some techniques from the \({L^{3}({\mathbb R}^{3})}\) setting.  相似文献   

16.
17.
We consider the one parameter family \({\alpha \mapsto T_{\alpha}}\) (\({\alpha \in [0,1)}\)) of Pomeau-Manneville type interval maps \({T_{\alpha}(x) = x(1+2^{\alpha} x^{\alpha})}\) for \({x \in [0,1/2)}\) and \({T_{\alpha}(x)=2x-1}\) for \({x \in [1/2, 1]}\), with the associated absolutely continuous invariant probability measure \({\mu_{\alpha}}\). For \({\alpha \in (0,1)}\), Sarig and Gouëzel proved that the system mixes only polynomially with rate \({n^{1-1/{\alpha}}}\) (in particular, there is no spectral gap). We show that for any \({\psi \in L^{q}}\), the map \({\alpha \to \int_0^{1} \psi\, d \mu_{\alpha}}\) is differentiable on \({[0,1-1/q)}\), and we give a (linear response) formula for the value of the derivative. This is the first time that a linear response formula for the SRB measure is obtained in the setting of slowly mixing dynamics. Our argument shows how cone techniques can be used in this context. For \({\alpha \ge 1/2}\) we need the \({n^{-1/{\alpha}}}\) decorrelation obtained by Gouëzel under additional conditions.  相似文献   

18.
We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.  相似文献   

19.
The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.  相似文献   

20.
We study the question of magnetic confinement of quantum particles on the unit disk \({\mathbb {D}}\) in \({\mathbb {R}^2}\) , i.e. we wish to achieve confinement solely by means of the growth of the magnetic field \({B(\vec x)}\) near the boundary of the disk. In the spinless case, we show that \({B(\vec x)\ge \frac{\sqrt 3}{2}\cdot\frac{1}{(1-r)^2}-\frac{1}{\sqrt 3}\frac{1}{(1-r)^2\ln \frac{1}{1-r}}}\) , for \({|\vec x|}\) close to 1, insures the confinement provided we assume that the non-radially symmetric part of the magnetic field is not very singular near the boundary. Both constants \({\frac{\sqrt 3}{2}}\) and \({-\frac{1}{\sqrt 3}}\) are optimal. This answers, in this context, an open question from Colin de Verdière and Truc (Ann Inst Fourier 2011, Preprint, arXiv:0903.0803v3). We also derive growth conditions for radially symmetric magnetic fields which lead to confinement of spin 1/2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号