首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Enantiomerically pure iridium complexes with phosphino‐ and (phosphinooxy)‐substituted N‐heterocyclic carbene (NHC) ligands were synthesized. Investigation of their electronic properties showed a similar trans influence of the phosphino (or phosphinooxy) and the NHC units. The complexes were tested in iridium‐catalyzed hydrogenation. While low conversions were observed with unfunctionalized olefins, the catalysts proved to be suitable for hydrogenation of the α,β‐unsaturated ester 20 , allylic alcohol 21 , and imine 22 . The enantioselectivities were, however, moderate.  相似文献   

2.
A strategy for expanding the utility of chiral pyridine‐2,6‐bis(oxazoline) (pybox) ligands for asymmetric transition metal catalysis is introduced by adding a bidentate ligand to modulate the electronic properties and asymmetric induction. Specifically, a ruthenium(II) pybox fragment is combined with a cyclometalated N‐heterocyclic carbene (NHC) ligand to generate catalysts for enantioselective transition metal nitrenoid chemistry, including ring contraction to chiral 2H‐azirines (up to 97 % ee with 2000 TON) and enantioselective C(sp3)?H aminations (up to 97 % ee with 50 TON).  相似文献   

3.
《Tetrahedron: Asymmetry》2007,18(2):229-236
Several silver(I) complexes with chiral amino-N-heterocyclic carbene (NHC) ligands, which are not diastereomerically pure, were prepared and used to generate in situ chelating NHC–amino palladium(II) complexes. The potential of these palladium(II) complexes in asymmetric catalysis was evaluated in the allylic alkylation reaction. The influence of the structure and of the diastereomeric purity of the ligands on enantioselectivity, as well as the role of the silver salts, were studied. Enantiomeric excesses of up to 80% were obtained with the best ligand.  相似文献   

4.
A highly enantioselective iridium‐ or ruthenium‐catalyzed intermolecular reductive amination/asymmetric hydrogenation relay with 2‐quinoline aldehydes and aromatic amines has been developed. A broad range of sterically tunable chiral N,N′‐diaryl vicinal diamines were obtained in high yields (up to 95 %) with excellent enantioselectivity (up to >99 % ee). The resulting chiral diamines could be readily transformed into sterically hindered chiral N‐heterocyclic carbene (NHC) precursors, which are otherwise difficult to access. The usefulness of this synthetic approach was further demonstrated by the successful application of one of the chiral vicinal diamines and chiral NHC ligands in a transition‐metal‐catalyzed asymmetric Suzuki–Miyaura cross‐coupling reaction and asymmetric ring‐opening cross‐metathesis, respectively.  相似文献   

5.
The chiral tridentate spiro P‐N‐S ligands (SpiroSAP) were developed, and their iridium complexes were prepared. Introduction of a 1,3‐dithiane moiety into the ligand resulted in a highly efficient chiral iridium catalyst for asymmetric hydrogenation of β‐alkyl‐β‐ketoesters, producing chiral β‐alkyl‐β‐hydroxyesters with excellent enantioselectivities (95–99.9 % ee) and turnover numbers of up to 355 000.  相似文献   

6.
A new class of efficient catalysts was developed for the asymmetric transfer hydrogenation of unsymmetrical ketones. A series of chiral N,S-chelates (6-22) was synthesized to serve as ligands in the iridium(I)-catalyzed reduction of ketones. Both formic acid and 2-propanol proved to be suitable as hydrogen donors. Sulfoxidation of an (R)-cysteine-based aminosulfide provided a diastereomeric ligand family containing a chiral sulfur atom. The two chiral centers of these ligands showed a clear effect of chiral cooperativity. In addition, aminosulfides containing two asymmetric carbon atoms in the backbone were synthesized. Both the sulfoxide-containing beta-amino alcohols and the aminosulfides derived from 1,2-disubstituted amino alcohols gave rise to high reaction rates and moderate to excellent enantioselectivities in the reduction of various ketones. The enantioselective outcome of the reaction was favorably affected by selecting the most appropriate hydrogen donor. Enantioselectivities of up to 97% were reached in the reduction of aryl-alkyl ketones.  相似文献   

7.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Two new classes of proline‐based P,O and P,N ligands were prepared and applied in the iridium‐catalyzed asymmetric hydrogenation of alkenes. Both types of ligands induced high enantioselectivities in the hydrogenation of trisubstituted C?C bonds. Iridium complexes derived from P,O ligands bearing sterically demanding amide or urea groups at the pyrrolidine N‐atom proved to be especially efficient catalysts for the conjugate reduction of α,β‐unsaturated esters and ketones, whereas analogous P,N ligands led to better results with dialkyl‐phenyl‐substituted alkenes and an allylic alcohol as substrates.  相似文献   

10.
A multicomponent strategy was applied to the synthesis of chiral bidentate unsaturated hydroxyalkyl‐ and carboxyalkyl‐N‐heterocyclic carbene (NHC) precursors. The newly developed low‐cost chiral ligands derived from amino alcohols and amino acids were evaluated in copper‐catalyzed asymmetric conjugated addition and asymmetric allylic alkylation, which afforded the desired tertiary and quaternary carbon stereocenters with excellent regio‐ and enantioselectivities (up to 99:1 e.r.).  相似文献   

11.
The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5‐di‐tert‐butylphenyl groups on the P atom ( 1c ) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97 % ee with high turnover number (TON up to 10 000) and high turnover frequency (TOF up to 3.7×104 h−1). Investigation on the structures of the iridium complexes of ligands (R)‐ 1a and 1c by X‐ray analyses disclosed that the 3,5‐di‐tert‐butyl groups on the P‐phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir‐(R)‐ 1c complex and H2 by means of ESI‐MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)‐ 1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)‐ 1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.  相似文献   

12.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

13.
A series of monodentate neutral and anionic phosphorus ligands was synthesized and evaluated in the asymmetric rhodium‐catalyzed hydrogenation of functionalized olefins by using either catalysts containing identical ligands or catalysts generated from mixtures of two different ligands. We expected that the combination of an anionic ligand with a neutral ligand would favor the formation of hetero over homo bis‐ligand complexes due to charge repulsion. NMR spectroscopic studies confirmed that charge effects can indeed shift the equilibrium toward the hetero bis‐ligand complexes. In several cases, the combination of a neutral phosphane with an anionic phosphane, one chiral and the other achiral, furnished significantly higher enantioselectivities than analogous mixtures of two neutral ligands. The best results were obtained with a mixture of an anionic phosphoramidite and a neutral phosphoric acid diester. It is supposed that in this case a hydrogen bond between the two ligands additionally stabilizes the hetero ligand combination.  相似文献   

14.
Novel axially chiral N‐heterocyclic carbene (NHC) Pd(II) complexes were prepared from optically active 1,1′‐binaphthalenyl‐2,2′‐diamine (BINAM) and H8‐BINAM and their crystal structures were unambiguously determined by X‐ray diffraction. These chiral N‐heterocyclic carbene (NHC) Pd(II) complexes were applied in the oxidative kinetic resolution of secondary alcohols using molecular oxygen as a terminal oxidant or under aerobic conditions, affording the corresponding sec‐alcohols in good yields with moderate to good enantioselectivities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We have evaluated a wide range of iridium complexes derived from chiral oxazoline‐based N,P ligands for the asymmetric hydrogenation of imines and identified three efficient catalysts. These catalysts are readily synthesized by straightforward convenient routes and are air and moisture stable. In the reduction of acetophenone N‐arylimines and related acyclic substrates, excellent enantioselectivities (up to 96 % ee) were obtained by using 0.1–0.5 mol % of catalyst at ?20 °C and 5–50 bar hydrogen pressure.  相似文献   

16.
Chiral N‐sulfonyldiamine was successfully anchored on mesoporous MCM‐41 silica. The MCM‐41‐supported chiral N‐sulfonyldiamine was used as an efficient heterogeneous chiral ligand in the asymmetric transfer hydrogenation of ketones. This heterogeneous system offered satisfactory enantioselectivities up to 94 % with excellent conversions.  相似文献   

17.
Palladium complexes incorporating chiral N‐heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α‐arylation of amides producing 3,3‐disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate‐determining and reductive elimination to be enantioselectivity‐determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8 , containing a tBu and a 1‐naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro‐oxindoles and three azaspiro‐oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X‐ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.  相似文献   

18.
Iron is of interest as a catalyst because of its established use in the Haber–Bosch process and because of its high abundance and low toxicity. Nitrogen‐heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron–NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1′‐bis(pyridin‐2‐yl)‐2,2‐bi(1H‐imidazole)‐κN3][3,3′‐bis(pyridin‐2‐yl‐κN)‐1,1′‐methanediylbi(1H‐imidazol‐2‐yl‐κC2)](trimethylphosphane‐κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C—C‐coupled biimidazole, is trapped by coordination to still‐intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.  相似文献   

19.
Axially chiral cis-chelated bidentate bis(N-heterocyclic carbene)-palladium(II) complexes with two weakly coordinating carboxylate ligands are effective catalysts for the asymmetric conjugate addition of arylboronic acids to cyclic enones, producing the corresponding adducts in moderate-to-high yields and with good-to-high enantioselectivities, in most cases under mild conditions.  相似文献   

20.
A number of new N‐heterocyclic carbene (NHC) ligands were synthesized via a multicomponent reaction, wherein an aldehyde or ketone, a primary amine and an α‐acidic isocyanide were reacted, giving the corresponding 2H‐2‐imidazolines. These were easily alkylated with an alkyl halide at position N‐3, yielding the final NHC precursors, that were then complexed with Ru in situ. The resulting complexes are shown to be active and selective catalysts for the transfer hydrogenation of furfural to furfurol, using isopropanol as the hydrogen source. Importantly, the carbene ligand remains coordinated to the ruthenium center throughout the reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号