首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a well-recognized need to develop Bayesian computational methodologies that scale well to large data sets. Recent attempts to develop such methodology have often focused on two approaches—variational approximation and advanced importance sampling methods. This note shows how importance sampling can be viewed as a variational approximation, achieving a pleasing conceptual unification of the two points of view. We consider a particle representation of a distribution as defining a certain parametric model and show how the optimal approximation (in the sense of minimization of a Kullback-Leibler divergence) leads to importance sampling type rules. This new way of looking at importance sampling has the potential to generate new algorithms by the consideration of deterministic choices of particles in particle representations of distributions.  相似文献   

2.
This article proposes a method for approximating integrated likelihoods in finite mixture models. We formulate the model in terms of the unobserved group memberships, z, and make them the variables of integration. The integral is then evaluated using importance sampling over the z. We propose an adaptive importance sampling function which is itself a mixture, with two types of component distributions, one concentrated and one diffuse. The more concentrated type of component serves the usual purpose of an importance sampling function, sampling mostly group assignments of high posterior probability. The less concentrated type of component allows for the importance sampling function to explore the space in a controlled way to find other, unvisited assignments with high posterior probability. Components are added adaptively, one at a time, to cover areas of high posterior probability not well covered by the current importance sampling function. The method is called incremental mixture importance sampling (IMIS).

IMIS is easy to implement and to monitor for convergence. It scales easily for higher dimensional mixture distributions when a conjugate prior is specified for the mixture parameters. The simulated values on which the estimate is based are independent, which allows for straightforward estimation of standard errors. The self-monitoring aspects of the method make it easier to adjust tuning parameters in the course of estimation than standard Markov chain Monte Carlo algorithms. With only small modifications to the code, one can use the method for a wide variety of mixture distributions of different dimensions. The method performed well in simulations and in mixture problems in astronomy and medical research.  相似文献   

3.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

4.
5.
A multi‐armed bandit is an experiment with the goal of accumulating rewards from a payoff distribution with unknown parameters that are to be learned sequentially. This article describes a heuristic for managing multi‐armed bandits called randomized probability matching, which randomly allocates observations to arms according the Bayesian posterior probability that each arm is optimal. Advances in Bayesian computation have made randomized probability matching easy to apply to virtually any payoff distribution. This flexibility frees the experimenter to work with payoff distributions that correspond to certain classical experimental designs that have the potential to outperform methods that are ‘optimal’ in simpler contexts. I summarize the relationships between randomized probability matching and several related heuristics that have been used in the reinforcement learning literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Model comparison for the purposes of selection, averaging, and validation is a problem found throughout statistics. Within the Bayesian paradigm, these problems all require the calculation of the posterior probabilities of models within a particular class. Substantial progress has been made in recent years, but difficulties remain in the implementation of existing schemes. This article presents adaptive sequential Monte Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection of models, as well as the parameters of those models. Both a simple product estimator and a combination of SMC and a path sampling estimator are considered and existing theoretical results are extended to include the path sampling variant. A novel approach to the automatic specification of distributions within SMC algorithms is presented and shown to outperform the state of the art in this area. The performance of the proposed strategies is demonstrated via an extensive empirical study. Comparisons with state-of-the-art algorithms show that the proposed algorithms are always competitive, and often substantially superior to alternative techniques, at equal computational cost and considerably less application-specific implementation effort. Supplementary materials for this article are available online.  相似文献   

7.
Piecewise affine inverse problems form a general class of nonlinear inverse problems. In particular inverse problems obeying certain variational structures, such as Fermat's principle in travel time tomography, are of this type. In a piecewise affine inverse problem a parameter is to be reconstructed when its mapping through a piecewise affine operator is observed, possibly with errors. A piecewise affine operator is defined by partitioning the parameter space and assigning a specific affine operator to each part. A Bayesian approach with a Gaussian random field prior on the parameter space is used. Both problems with a discrete finite partition and a continuous partition of the parameter space are considered.

The main result is that the posterior distribution is decomposed into a mixture of truncated Gaussian distributions, and the expression for the mixing distribution is partially analytically tractable. The general framework has, to the authors' knowledge, not previously been published, although the result for the finite partition is generally known.

Inverse problems are currently of large interest in many fields. The Bayesian approach is popular and most often highly computer intensive. The posterior distribution is frequently concentrated close to high-dimensional nonlinear spaces, resulting in slow mixing for generic sampling algorithms. Inverse problems are, however, often highly structured. In order to develop efficient sampling algorithms for a problem at hand, the problem structure must be exploited.

The decomposition of the posterior distribution that is derived in the current work can be used to develop specialized sampling algorithms. The article contains examples of such sampling algorithms. The proposed algorithms are applicable also for problems with exact observations. This is a case for which generic sampling algorithms tend to fail.  相似文献   

8.
Bayesian Networks (BNs) are probabilistic inference engines that support reasoning under uncertainty. This article presents a methodology for building an information technology (IT) implementation BN from client–server survey data. The article also demonstrates how to use the BN to predict the attainment of IT benefits, given specific implementation characteristics (e.g., application complexity) and activities (e.g., reengineering). The BN is an outcome of a machine learning process that finds the network’s structure and its associated parameters, which best fit the data. The article will be of interest to academicians who want to learn more about building BNs from real data and practitioners who are interested in IT implementation models that make probabilistic statements about certain implementation decisions.  相似文献   

9.
Methods for spatial cluster detection attempt to locate spatial subregions of some larger region where the count of some occurrences is higher than expected. Event surveillance consists of monitoring a region in order to detect emerging patterns that are indicative of some event of interest. In spatial event surveillance, we search for emerging patterns in spatial subregions.A well-known method for spatial cluster detection is Kulldorff’s [M. Kulldorff, A spatial scan statistic, Communications in Statistics: Theory and Methods 26 (6) (1997)] spatial scan statistic, which directly analyzes the counts of occurrences in the subregions. Neill et al. [D.B. Neill, A.W. Moore, G.F. Cooper, A Bayesian spatial scan statistic, Advances in Neural Information Processing Systems (NIPS) 18 (2005)] developed a Bayesian spatial scan statistic called BSS, which also directly analyzes the counts.We developed a new Bayesian-network-based spatial scan statistic, called BNetScan, which models the relationships among the events of interest and the observable events using a Bayesian network. BNetScan is an entity-based Bayesian network that models the underlying state and observable variables for each individual in a population.We compared the performance of BNetScan to Kulldorff’s spatial scan statistic and BSS using simulated outbreaks of influenza and cryptosporidiosis injected into real Emergency Department data from Allegheny County, Pennsylvania. It is an open question whether we can obtain acceptable results using a Bayesian network if the probability distributions in the network do not closely reflect reality, and thus, we examined the robustness of BNetScan relative to the probability distributions used to generate the data in the experiments. Our results indicate that BNetScan outperforms the other methods and its performance is robust relative to the probability distribution that is used to generate the data.  相似文献   

10.
本文给出了样本相互独立,但不同分布的情况下后验概率函数的表达式及其与序贯后验概率函数之间的关系。在此基础上,给出了先验分布和条件分布为0-1分布情况下贝叶斯后验概率大小的比较方法,结合贝叶斯检验分析法安排医疗检查,使其在不降低诊断准确率的前提下,节省检查费用,提出了合理安排医疗检查的建议。  相似文献   

11.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

12.
By far the most efficient methods for global optimization are based on starting a local optimization routine from an appropriate subset of uniformly distributed starting points. As the number of local optima is frequently unknown in advance, it is a crucial problem when to stop the sequence of sampling and searching. By viewing a set of observed minima as a sample from a generalized multinomial distribution whose cells correspond to the local optima of the objective function, we obtain the posterior distribution of the number of local optima and of the relative size of their regions of attraction. This information is used to construct sequential Bayesian stopping rules which find the optimal trade off between reliability and computational effort.  相似文献   

13.
Inference algorithms in directed evidential networks (DEVN) obtain their efficiency by making use of the represented independencies between variables in the model. This can be done using the disjunctive rule of combination (DRC) and the generalized Bayesian theorem (GBT), both proposed by Smets [Ph. Smets, Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning 9 (1993) 1–35]. These rules make possible the use of conditional belief functions for reasoning in directed evidential networks, avoiding the computations of joint belief function on the product space. In this paper, new algorithms based on these two rules are proposed for the propagation of belief functions in singly and multiply directed evidential networks.  相似文献   

14.
Orthonormal matrices play an important role in reduced-rank matrix approximations and the analysis of matrix-valued data. A matrix Bingham–von Mises–Fisher distribution is a probability distribution on the set of orthonormal matrices that includes linear and quadratic terms in the log-density, and arises as a posterior distribution in latent factor models for multivariate and relational data. This article describes rejection and Gibbs sampling algorithms for sampling from this family of distributions, and illustrates their use in the analysis of a protein–protein interaction network. Supplemental materials, including code and data to generate all of the numerical results in this article, are available online.  相似文献   

15.
A multiple‐regime threshold nonlinear financial time series model, with a fat‐tailed error distribution, is discussed and Bayesian estimation and inference are considered. Furthermore, approximate Bayesian posterior model comparison among competing models with different numbers of regimes is considered which is effectively a test for the number of required regimes. An adaptive Markov chain Monte Carlo (MCMC) sampling scheme is designed, while importance sampling is employed to estimate Bayesian residuals for model diagnostic testing. Our modeling framework provides a parsimonious representation of well‐known stylized features of financial time series and facilitates statistical inference in the presence of high or explosive persistence and dynamic conditional volatility. We focus on the three‐regime case where the main feature of the model is to capturing of mean and volatility asymmetries in financial markets, while allowing an explosive volatility regime. A simulation study highlights the properties of our MCMC estimators and the accuracy and favourable performance as a model selection tool, compared with a deviance criterion, of the posterior model probability approximation method. An empirical study of eight international oil and gas markets provides strong support for the three‐regime model over its competitors, in most markets, in terms of model posterior probability and in showing three distinct regime behaviours: falling/explosive, dormant and rising markets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
To evaluate the impact of model inaccuracies over the network’s output, after the evidence propagation, in a Gaussian Bayesian network, a sensitivity measure is introduced. This sensitivity measure is the Kullback-Leibler divergence and yields different expressions depending on the type of parameter to be perturbed, i.e. on the inaccurate parameter.In this work, the behavior of this sensitivity measure is studied when model inaccuracies are extreme, i.e. when extreme perturbations of the parameters can exist. Moreover, the sensitivity measure is evaluated for extreme situations of dependence between the main variables of the network and its behavior with extreme inaccuracies. This analysis is performed to find the effect of extreme uncertainty about the initial parameters of the model in a Gaussian Bayesian network and about extreme values of evidence. These ideas and procedures are illustrated with an example.  相似文献   

17.
In this article, we propose generalized Bayesian dynamic factor models for jointly modeling mixed-measurement time series. The framework allows mixed-scale measurements associated with each time series, with different measurements having different distributions in the exponential family conditionally on time-varying latent factor(s). Efficient Bayesian computational algorithms are developed for posterior inference on both the latent factors and model parameters, based on a Metropolis–Hastings algorithm with adaptive proposals. The algorithm relies on a Greedy Density Kernel Approximation and parameter expansion with latent factor normalization. We tested the framework and algorithms in simulated studies and applied them to the analysis of intertwined credit and recovery risk for Moody’s rated firms from 1982 to 2008, illustrating the importance of jointly modeling mixed-measurement time series. The article has supplementary materials available online.  相似文献   

18.
Summary The Bayesian estimation problem for the parameter θ of an exponential probability distribution is considered, when it is assumed that θ has a natural conjugate prior density and a loss-function depending on the squared error is used. It is shown that, with probability one, the posterior density of the Bayesian—centered and scaled parameter converges pointwise to the normal probability density. The weak convergence of the posterior distributions to the normal distribution follows directly. Both correct and incorrect models are studied and the asymptotic normality is stated respectively.  相似文献   

19.
刘书庆  王怡萍 《运筹与管理》2021,30(11):176-182
为有效解决因产品质量危机事件发生原因揭示不准确而导致应对措施选择与实施不当问题,根据产品质量危机影响因素发掘结果,提取出了产品质量危机事件可能原因,采用故障树法构建了质量危机事件潜在原因关系模型;将故障树法和贝叶斯网络相结合,基于专家调查与模糊集理论,推理出底层原因先验概率算法,并将其先验概率输入贝叶斯网络模型,获得底层原因后验概率及关键重要度,将后验概率及关键重要度共同作为质量危机事件关键原因诊断依据,构建了质量危机事件原因挖掘模型;通过实际案例验证了关键原因挖掘结果的准确性,为企业挖掘质量危机事件发生原因提供了理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号