首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimanganese(II,II) complexes 1a [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)) and 1b [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), where HL is the unsymmetrical phenol ligand 2-(bis-(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol, react with hydrogen peroxide in acetonitrile solution. The disproportionation reaction was monitored by electrospray ionization mass spectrometry (ESI-MS) and EPR and UV-visible spectroscopies. Extensive EPR studies have shown that a species (2) exhibiting a 16-line spectrum at g approximately 2 persists during catalysis. ESI-MS experiments conducted similarly during catalysis associate 2a with a peak at 729 (791 for 2b) corresponding to the formula [Mn(III)Mn(IV)(L)(O)(2)(OAc)](+) ([Mn(III)Mn(IV)(L)(O)(2)(OBz)](+) for 2b). At the end of the reaction, it is partly replaced by a species (3) possessing a broad unfeatured signal at g approximately 2. ESI-MS associates 3a with a peak at 713 (775 for 3b) corresponding to the formula [Mn(II)Mn(III)(L)(O)(OAc)](+) ([Mn(II)Mn(III)(L)(O)(OBz)](+) for 3b). In the presence of H(2)(18)O, these two peaks move to 733 and to 715 indicating the presence of two and one oxo ligands, respectively. When H(2)(18)O(2) is used, 2a and 3a are labeled showing that the oxo ligands come from H(2)O(2). Interestingly, when an equimolar mixture of H(2)O(2) and H(2)(18)O(2) is used, only unlabeled and doubly labeled 2a/b are formed, showing that its two oxo ligands come from the same H(2)O(2) molecule. All these experiments lead to attribute the formula [Mn(III)Mn(IV)(L)(O)(2)(OAc)](+) to 2a and to 3a the formula [Mn(II)Mn(III)(L)(O)(OAc)](+). Freeze-quench/EPR experiments revealed that 2a appears at 500 ms and that another species with a 6-line spectrum is formed transiently at ca. 100 ms. 2a was prepared by reaction of 1a with tert-butyl hydroperoxide as shown by EPR and UV-visible spectroscopies and ESI-MS experiments. Its structure was studied by X-ray absorption experiments which revealed the presence of two or three O atoms at 1.87 A and three or two N/O atoms at 2.14 A. In addition one N atom was found at a longer distance (2.3 A) and one Mn at 2.63 A. 2a can be one-electron oxidized at E(1/2) = 0.91 V(NHE) (DeltaE(1/2) = 0.08 V) leading to its Mn(IV)Mn(IV) analogue. The formation of 2a from 1a was monitored by UV-visible and X-ray absorption spectroscopies. Both concur to show that an intermediate Mn(II)Mn(III) species, resembling 4a [Mn(2)(L)(OAc)(2)(H(2)O)](ClO(4))(2), the one-electron-oxidized form of 1a, is formed initially and transforms into 2a. The structures of the active intermediates 2 and 3 are discussed in light of their spectroscopic properties, and potential mechanisms are considered and discussed in the context of the biological reaction.  相似文献   

2.
Hydrogen trititanate (H 2Ti 3O 7) nanofibers were prepared by a hydrothermal method in 10 M NaOH at 403 K, followed by acidic rinsing and drying at 383 K. Calcining H 2Ti 3O 7 nanofibers at 573 K led to the formation of TiO 2 (B) nanofibers. Calcination at 673 K improved the crystallinity of the TiO 2 (B) nanofibers and did not cause any change in the morphology and dimensions of the nanofibers. TiO 2 (B) and H 2Ti 3O 7 nanofibers are 10-20 nm in diameter and several micrometers long, but FE-SEM reveals that several of these nanofibers tend to bind tightly to each other, forming a fiber bundle. Calcination at 773 K transformed TiO 2 (B) nanofibers into a TiO 2 (B)/anatase bicrystalline mixture with their fibrous morphology remaining intact. Upon increasing the calcination temperature to 873 K, most of the TiO 2 (B) nanofibers were converted into anatase nanofibers and small anatase particles with smoother surfaces. In the photocatalytic dehydrogenation of neat ethanol, 1% Pt/TiO 2 (B) nanofiber calcined at 673 K was the most active catalyst and generated about the same amount of H 2 as did 1% Pt/P-25. TPR indicated that the calcination of 1% Pt/TiO 2 (B) nanofiber at 573 K produced a poor Pt dispersion and poor activity. Calcination at a temperature higher than 773 K (in ambient air) resulted in an SMSI effect similar to that observed over TiO 2 in the reductive atmosphere. As suggested by XPS, such an SMSI effect decreased the surface concentration of Pt metal and created Pt (delta) sites, preventing Pt particles from functioning as a Schottky barrier and leading to a lower activity. Because of the synergetic effect between TiO 2 (B) and anatase phases, the bicrystalline mixture, produced by calcining at 773 K, was able to counter negative effects such as the reduction in surface area and the SMSI effect and maintained its photocatalytic activity.  相似文献   

3.
Burneau A  Tazi M  Bouzat G 《Talanta》1992,39(7):743-748
Raman spectra are used to determine the formation constants of uranyl sulphate complexes in aqueous solutions at 20 degrees and remedy the confusion existing in this area in the available literature. Solutions with a varying total sulphate concentration and an ionic strength lower than 0.4M are analysed. The species UO(2)SO(4) and UO(2)(SO(4))(2-)(2) are characterized by a resolved Raman band at 861 cm(-1) and an unresolved one at 852 cm(-1), corresponding to the uranyl symmetrical stretching vibration. The equilibrium constants, in term of activity (standard state 1M), are found to be about 1400 and 11, respectively, for the consecutive reactions: UO(2+)(2)(aq)+SO(2-)(4)(aq)=UO(2)SO(4)(aq) and UO(2)SO(4)(aq)+SO(2-)(4)(aq)=UO(2)(SO(4))(2-)(2)(aq).  相似文献   

4.
A newly designed probe, 6-thiophen-2-yl-5,6-dihydrobenzo[4,5]imidazo-[1,2-c] quinazoline (HL(1)) behaves as a highly selective ratiometric fluorescent sensor for Fe(2+) at pH 4.0-5.0 and Fe(3+) at pH 6.5-8.0 in acetonitrile-HEPES buffer (1/4) (v/v) medium. A decrease in fluorescence at 412 nm and increase in fluorescence at 472 nm with an isoemissive point at 436 nm with the addition of Fe(2+) salt solution is due to the formation of mononuclear Fe(2+) complex [Fe(II)(HL)(ClO(4))(2)(CH(3)CN)(2)] (1) in acetonitrile-HEPES buffer (100 mM, 1/4, v/v) at pH 4.5 and a decrease in fluorescence at 412 nm and increase in fluorescence at 482 nm with an isoemissive point at 445 nm during titration by Fe(3+) salt due to the formation of binary Fe(3+) complex, [Fe(III)(L)(2)(ClO(4))(H(2)O)] (2) with co-solvent at biological pH 7.4 have been established. Binding constants (K(a)) in the solution state were calculated to be 3.88 × 10(5) M(-1) for Fe(2+) and 0.21 × 10(3) M(-1/2) for Fe(3+) and ratiometric detection limits for Fe(2+) and Fe(3+) were found to be 2.0 μM and 3.5 μM, respectively. The probe is a "naked eye" chemosensor for two states of iron. Theoretical calculations were studied to establish the configurations of probe-iron complexes. The sensor is efficient for detecting Fe(3+)in vitro by developing a good image of the biological organelles.  相似文献   

5.
Pandey KK 《Inorganic chemistry》2001,40(20):5092-5096
Ab initio calculations at the SCF, MP2, CASSCF, and CASPT2 levels of theory with basis sets using atomic pseudopotentials have been carried out for the stretched eta(3)-hydridoborate sigma-complex of niobium, [Cl2Nb(H2B(OH)2)], in order to investigate the nature and energetics of the interaction between the transition metal and the eta(3)-hydridoborate ligand. The geometry of the complex [Cl2Nb(H2B(OH)2] and its fragments [Cl2Nb](+) and [H2B(OH)2](-) were optimized at SCF and CASSCF levels. These results are consistent with [Cl2Nb(eta(3)-H2B(OH)2)] being a Nb(III) complex in which both hydrogen and boron of the [eta(3)-H2B(OH)2](-) ligand have a bonding interaction with the niobium preserving stretching B-H bond character. The calculated values of DEF (energy required to restore the fragment from the equilibrium structure to the structure it takes in the complex) for [Cl2Nb](+) are 5.35 kcal/mol at SCF, 3.27 kcal/mol at MP2, 4.80 kcal/mol at CASSCF, and 2.82 kcal/mol at CASPT2 and for [H2B(OH)2](-) 21.13 kcal/mol at SCF, 23.85 kcal/mol at MP2, 20.69 kcal/mol at CASSCF, and 23.48 kcal/mol at CASPT2. Values of INT (stabilization energy resulting from the coordination of distorted ligand to the metal fragment) for the complex [Cl2Nb(H2B(OH)2)] are -239.35 kcal/mol at SCF, -260.00 kcal/mol at MP2, -230.76 kcal/mol at CASSCF, and -252.60 kcal/mol at CASPT2. For the complex [(eta(5)-C5H5)2Nb(H2B(OH)2)], calculations at the SCF and MP2 levels were carried out. Values of INT for [(eta(5)-C5H5)2Nb(H2B(OH)2)] are -169.93 kcal/mol at SCF and -210.62 kcal/mol at MP2. The results indicate that the bonding of the [eta(3)-H2B(OH)2](-) ligand with niobium is substantially stable. The electronic structures of [Cl2Nb(H2B(OH)2)], [(eta(5)-C5H5)2Nb(H2B(OH)2)], and its fragments are analyzed in detail as measured by Mulliken charge distributions and orbital populations.  相似文献   

6.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

7.
Bhugun I  Anson FC 《Inorganic chemistry》1996,35(25):7253-7259
In solution, the [(tim)Co](2+) complex (tim = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene) reacts only slowly with O(2), but upon adsorption on graphite electrodes, it becomes an active catalyst for the reduction of O(2) to H(2)O(2). The electroreduction of O(2) proceeds in a single voltammetric step at close to the diffusion-controlled rate at a relatively positive potential (0.25 V vs SCE). The remarkable enhancement in catalytic activity is attributed to a higher affinity for O(2) of the adsorbed complex as a result of its interactions with functional groups on the surface of roughened or oxidized graphite. A possible mechanism for the catalytic reduction of O(2) is proposed. It differs from the one employed by the analogous [(hmc)Co](2+) complex (hmc = C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) which operates at less positive potentials and exhibits two separated voltammetric steps in the reduction of O(2), via [(hmc)CoOOH](2+), to H(2)O(2).  相似文献   

8.
The addition reaction of chlorine with ethylene (C(2)H(4)) is expected to proceed via a free radical intermediate, the 2-chloroethyl radical, however, this intermediate has not been previously observed spectroscopically. Irradiation at 365 nm of a co-deposited mixture of Cl(2), C(2)H(4), and p-H(2) at 3.2 K produces a series of new lines in the infrared spectrum. A strong line at 664.0 cm(-1) and weaker lines at 562.1, 1069.9, 1228.0, 3041.1 and 3129.3 cm(-1) are concluded to be due to a single carrier based on their behavior upon subsequent annealing to 4.5 K and secondary irradiation at 254 and 214 nm. The positions and intensities of these lines agree with the MP2/aug-cc-pVDZ predicted vibrational spectrum of the 2-chloroethyl (˙CH(2)CH(2)Cl) radical. In order to confirm this assignment, isotopic experiments were performed with C(2)D(4) and t-C(2)H(2)D(2) and the corresponding infrared bands due to the deuterium isotopomers of this radical (˙CD(2)CD(2)Cl and ˙C(2)H(2)D(2)Cl) have been observed. A final set of experiments were performed following irradiation of the Cl(2)/C(2)H(4)/p-H(2) mixture at 365 nm, in which the matrix was irradiated with filtered infrared light from a globar source, which has been shown to induce reactions between isolated Cl atoms and matrix H(2) to produce HCl and H atoms. In these experiments, the major products observed were HCl, the ethyl radical (˙C(2)H(5)) and ethyl chloride (C(2)H(5)Cl) and the possible mechanisms for the formation of these species are discussed.  相似文献   

9.
Single-crystalline chalcopyrite CuInSe(2) nanorods (CuInSe(2)NRs) of 50-100 nm in diameter and up to a few micrometers in length have been synthesized solvothermally. High-resolution transmission electron microscopic images of the CuInSe(2)NRs reveal the d-spacing of 0.335 nm for the (112) crystalline planes and a growth direction along [331]. The near-infrared absorption spectrum of the chalcopyrite CuInSe(2)NRs shows a peak maximum at 1162 nm and an onset at 1262 nm, indicating no apparent blue-shift compared with those of Cu-rich CuInSe(2) thin films. An intense peak at 175.1 cm(-1) in the room-temperature Raman scattering spectrum of CuInSe(2)NRs corresponds to the A(1) phonon mode of tetragonal CuInSe(2) chalcopyrite. The narrower full width at half-maximum (fwhm) of 9.5 cm(-1) for CuInSe(2)NRs, in comparison with fwhm approximately 12 cm(-1) for CuInSe(2) films, indicates a uniform size distribution and single crystallization in the nanorods. Analysis of the photoluminescence from the single-crystalline CuInSe(2)NRs measured at 10 K has categorized the emission into seven groups of transitions as characterized by free excitons, bound excitons, conduction band to acceptor levels, and bound excitons at different defects.  相似文献   

10.
We report direct observation of an entropic effect in determining the folding of a linear dicarboxylate dianion with a flexible aliphatic chain [(-)O(2)C-(CH(2))(6)-CO(2)(-)] by photoelectron spectroscopy as a function of temperature (18-300 K) and degree of solvation from 1 to 18 water molecules. A folding transition is observed to occur at 16 solvent water molecules at room temperature and at 14 solvent molecules below 120 K due to the entropic effect. The (-)O(2)C-(CH(2))(6)-CO(2)(-)(H(2)O)(14) hydrated cluster exhibits interesting temperature-dependent behaviors, and its ratio of folded over linear conformations can be precisely controlled as a function of temperature, yielding the enthalpy and entropy differences between the two conformations. A folding barrier is observed at very low temperatures, resulting in kinetic trapping of the linear conformation. The current work provides a simple model system to study the dynamics and entropic effect in complex systems and may be important for understanding the hydration and conformation changes of biological molecules.  相似文献   

11.
He-Ne laser pre-irradiation-induced protection against UVC damage was investigated in wild-type E. coli K12 strain AB1157 and its isogenic DNA repair mutant strains. At a dose of 7 kJ/m(2), pre-irradiation was observed to induce protection in recA proficient strains (AB1157 and uvrA(-) AB1886) at both the irradiances investigated (2 and 100 W/m(2)). However, at the same dose (7 kJ/m(2)), while no protection was observed at 100 W/m(2) in the recA(-) strain, some protection appeared to be there at 2 W/m(2). Mechanistic studies carried out on these strains at the two irradiances suggest that, whereas the protection observed at 100 W/m(2) is mediated by singlet oxygen, that observed at 2 W/m(2) is not. Further, the fact that protection at 100 W/m(2) was observed only in recA proficient strains suggests that it may arise due to the induction of DNA repair processes controlled by the recA gene. The latter may arise due to the oxidative stress produced by singlet oxygen generated by He-Ne laser irradiation. In contrast, the protection observed at 2 W/m(2) appears to be independent of the DNA repair proficiency of the strain.  相似文献   

12.
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.  相似文献   

13.
The mechanism of the reaction of horseradish peroxidase isoenzyme C (HRPC) with hydrogen peroxide to form the reactive enzyme intermediate compound I has been studied using electronic absorbance, rapid-scan stopped-flow, and electron paramagnetic resonance (EPR) spectroscopies at both acid and basic pH. The roles of the active site residues His42 and Arg38 in controlling heterolytic cleavage of the H(2)O(2) oxygen-oxygen bond have been probed with site-directed mutant enzymes His42 --> Leu (H42L), Arg38 --> Leu (R38L), and Arg38 --> Gly (R38G). The biphasic reaction kinetics of H42L with H(2)O(2) suggested the presence of an intermediate species and, at acid pH, a reversible second step, probably due to a neutral enzyme-H(2)O(2) complex and the ferric-peroxoanion-containing compound 0. EPR also indicated the formation of a protein radical situated more than approximately 10 A from the heme iron. The stoichiometry of the reaction of the H42L/H(2)O(2) reaction product and 2,2'-azinobis(3-ethylbenzothiazolinesulfonic acid) (ABTS) was concentration dependent and fell from a value of 2 to 1 above 0.7 mM ABTS. These data can be explained if H(2)O(2) undergoes homolytic cleavage in H42L. The apparent rate of compound I formation by H42L, while low, was pH independent in contrast to wild-type HRPC where the rate falls at acid pH, indicating the involvement of an ionizable group with pK(a) approximately 4. In R38L and R38G, the apparent pK(a) was shifted to approximately 8 but there is no evidence that homolytic cleavage of H(2)O(2) occurs. These data suggest that His42 acts initially as a proton acceptor (base catalyst) and then as a donor (acid catalyst) at neutral pH and predict the observed slower rate and lower efficiency of heterolytic cleavage observed at acid pH. Arg38 is influential in lowering the pK(a) of His42 and additionally in aligning H(2)O(2) in the active site, but it does not play a direct role in proton transfer.  相似文献   

14.
Fourier transform visible spectroscopy, in conjunction with VUV photons produced by a synchrotron, is employed to investigate the photodissociation of CH3CN. Emission is observed from both the CN(B2Sigma+-X2Sigma+) and CH(A2Delta-X2Pi) transitions; only the former is observed in spectra recorded at 10.2 and 11.5 eV, whereas both are detected in the 16 eV spectrum. The rotational and vibrational temperatures of both the CN(B2Sigma+) and CH(A2Delta) radical products are derived using a combination of spectral simulations and Boltzmann plots. The CN(B2Sigma+) fragment displays a bimodal rotational distribution in all cases. Trot(CN(B2Sigma+)) ranges from 375 to 600 K at lower K' and from 1840 to 7700 K at higher K' depending on the photon energy used. Surprisal analyses indicate clear bimodal rotational distributions, suggesting CN(B2Sigma+) is formed via either linear or bent transition states, respectively, depending on the extent of rotational excitation in this fragment. CH(A2Delta) has a single rotational distribution when produced at 16 eV, which results in Trot(CH(A2Delta))=4895+/-140 K in v'=0 and 2590+/-110 K in v'=1. From thermodynamic calculations, it is evident that CH(A2Delta) is produced along with CN(X2Sigma+)+H2. These products can be formed by a two step mechanism (via excited CH3* and ground state CN(X2Sigma+)) or a process similar to the "roaming" atom mechanism; the data obtained here are insufficient to definitively conclude whether either pathway occurs. A comparison of the CH(A2Delta) and CN(B2Sigma+) rotational distributions produced by 16 eV photons allows the ratio between the two excited fragments at this energy to be determined. An expression that considers the rovibrational populations of both band systems results in a CH(A2Delta):CN(B2Sigma+) ratio of (1.2+/-0.1):1 at 16 eV, thereby indicating that production of CH(A2Delta) is significant at 16 eV.  相似文献   

15.
The mechanism of the gas-phase reaction of OH radicals with hydroxyacetone (CH3C(O)CH2OH) was studied at 200 Torr over the temperature range 236-298 K in a turbulent flow reactor coupled to a chemical ionization mass-spectrometer. The product yields and kinetics were measured in the presence of O2 to simulate the atmospheric conditions. The major stable product at all temperatures is methylglyoxal. However, its yield decreases from 82% at 298 K to 49% at 236 K. Conversely, the yields of formic and acetic acids increase from about 8% to about 20%. Other observed products were formaldehyde, CO2 and peroxy radicals HO2 and CH3C(O)O2. A partial re-formation of OH radicals (by approximately 10% at 298 K) was found in the OH + hydroxyacetone + O2 chemical system along with a noticeable inverse secondary kinetic isotope effect (k(OH)/k(OD) = 0.78 +/- 0.10 at 298 K). The observed product yields are explained by the increasing role of the complex formed between the primary radical CH3C(O)CHOH and O2 at low temperature. The rate constant of the reaction CH3C(O)CHOH + O2 --> CH3C(O)CHO + HO2 at 298 K, (3.0 +/- 0.6) x 10(-12) cm3 molecule(-1) s(-1), was estimated by computer simulation of the concentration-time profiles of the CH3C(O)CHO product. The detailed mechanism of the OH-initiated oxidation of hydroxyacetone can help to better describe the atmospheric oxidation of isoprene, in particular, in the upper troposphere.  相似文献   

16.
Four mononuclear metallomacrocycles with identical cavities but different transition metals (Os(VI), Pd(II), Pt(II), and Re(I)) were prepared. With these metallomacrocycles, the corresponding rotaxanes 2-Os, 2-Pd, 2-Pt, and 2-Re were self-assembled by hydrogen-bonding interactions. The kinetic stabilities of the rotaxanes were determined quantitatively and compared with each other by (1)H NMR spectroscopic techniques, including two-dimensional exchange spectroscopy (2D-EXSY) experiments. The activation free energies (DeltaG( not equal )) for the exchange between the rotaxanes 2-Os, 2-Pd and 2-Pt and their free components were determined to be 15.5, 16.0, and 16.4 kcal mol(-1), respectively. These magnitudes imply that the rotaxanes 2-Os, 2-Pd and 2-Pt are kinetically labile at room temperature and exist only as equilibrium mixtures with free components in solution. In contrast, the rotaxane 2-Re is kinetically stable enough to be isolated in pure form by silica gel chromatography under ordinary laboratory conditions. However, at higher temperatures (>60 degrees C) 2-Re was slowly disassembled into its components until the equilibrium was established. The rate constants were measured at three different temperatures, and the Eyring plot yielded the activation enthalpy DeltaH(not equal)=35 kcal mol(-1) and the activation entropy DeltaS(not equal)=27 eu for the disassembly of the rotaxane 2-Re in Cl(2)CDCDCl(2). These thermodynamic parameters gave the activation free energy DeltaG(not equal)(off)=27.1 kcal mol(-1) at 25 degrees C. Consequently, 2-Re is one example of a novel metallomacrocycle-based rotaxane that contains a coordination bond with enough strength to allow both for isolation in pure form around room temperature and for self-assembly at higher temperatures.  相似文献   

17.
The synthesis of (U,Th)O(2) solid solutions at a relatively low temperature of 1100 °C using a new technique is described. First, separate actinide oxides were reacted with ammonium hydrogen fluoride to form ammonium actinide fluorides at room temperature. Subsequently, this fluoride was converted to an actinide oxide solid solution using a two-phase reaction process, which involved heating of the fluoride first at 610 °C in static air followed by heating at 1100 °C in flowing argon. Oxide solid solutions of UO(2) and ThO(2) were synthesized for a ThO(2) content from 10 to 90 wt %. Microscopic investigation showed that the (U,Th)O(2) solid solutions synthesized using this method had high crystallinity and homogeneity up to nanoscale.  相似文献   

18.
Chlorine dioxide oxidation of cysteine (CSH) is investigated under pseudo-first-order conditions (with excess CSH) in buffered aqueous solutions, p[H+] 2.7-9.5 at 25.0 degrees C. The rates of chlorine dioxide decay are first order in both ClO2 and CSH concentrations and increase rapidly as the pH increases. The proposed mechanism is an electron transfer from CS- to ClO2 (1.03 x 10(8) M(-1) s(-1)) with a subsequent rapid reaction of the CS* radical and a second ClO2 to form a cysteinyl-ClO2 adduct (CSOClO). This highly reactive adduct decays via two pathways. In acidic solutions, it hydrolyzes to give CSO(2)H (sulfinic acid) and HOCl, which in turn rapidly react to form CSO3H (cysteic acid) and Cl-. As the pH increases, the (CSOClO) adduct reacts with CS- by a second pathway to form cystine (CSSC) and chlorite ion (ClO2-). The reaction stoichiometry changes from 6 ClO2:5 CSH at low pH to 2 ClO2:10 CSH at high pH. The ClO2 oxidation of glutathione anion (GS-) is also rapid with a second-order rate constant of 1.40 x 10(8) M(-1) s(-1). The reaction of ClO2 with CSSC is 7 orders of magnitude slower than the corresponding reaction with cysteinyl anion (CS-) at pH 6.7. Chlorite ion reacts with CSH; however, at p[H+] 6.7, the observed rate of this reaction is slower than the ClO2/CSH reaction by 6 orders of magnitude. Chlorite ion oxidizes CSH while being reduced to HOCl, which in turn reacts rapidly with CSH to form Cl-. The reaction products are CSSC and CSO3H with a pH-dependent distribution similar to the ClO2/CSH system.  相似文献   

19.
The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) difference spectra of the dilute aqueous (NH4)2SO4, Na2SO4, MgSO4, ZnSO4, NaClO4, and Mg(ClO4)2 solutions by pure water were obtained at various concentrations. In the difference spectra of aqueous (NH4)2SO4 solutions, a peak at approximately 3039 cm(-1), two shoulders at approximately 3155 and approximately 2894 cm(-1), and a peak at approximately 1445 cm(-1) were ascribed to N-H stretching and bending vibrations, respectively. A small negative peak was resolved at approximately 3660 cm(-1) in the difference spectra of (NH4)2SO4, which is the sole contribution of SO4(2-) either in the O-H stretching or in the O-H bending region. The positive peaks of the difference spectra in the O-H stretching region for Na2SO4, MgSO4, and ZnSO4 systems, which constantly appeared at approximately 3423, approximately 3136, and approximately 3103 cm(-1) respectively, were suggested to be the contribution of the interactions between metal cations (Na+, Mg2+, and Zn2+) and water molecules, especially from the first hydrated layer of the cations. In the region of 800-1200 cm(-1), the normally infrared-prohibited nu1 (SO4(2-)) band was observed as a weak peak at approximately 981 cm(-1) even at very dilute concentrations (0.10 mol dm(-3)) due to the disturbance of the water molecules hydrated with SO4(2-), even though such a feature may increasingly result from associated ions with increasing concentration. The spectra of the water molecules directly influenced by ClO4-, i.e., mostly the first layer of hydrated water, in NaClO4 and Mg(ClO4)2 solutions were obtained by subtracting the corresponding spectra of the same metal sulfate solutions at the same concentrations from the perchlorate solutions. A positive peak at approximately 3583 +/- 6 cm(-1) and a negative peak at approximately 3184 +/- 25 cm(-1) were obtained as the result of the subtraction. The positive peak was attributed to the water molecules weakly hydrogen-bonded with ClO4-, while the negative one to the reduction of water molecules with fully hydrogen-bonded five-molecule tetrahedral nearest neighbor structure on the introduction of ClO4-.  相似文献   

20.
The complexes [Fe[HC(3,5-Me2pz)3]2](BF4)2 (1), [Fe[HC(pz)3]2](BF4)2 (2), and [Fe[PhC(pz)2(py)]2](BF4)2 (3) (pz = 1-pyrazolyl ring, py = pyridyl ring) have been synthesized by the reaction of the appropriate ligand with Fe(BF4)2.6H2O. Complex 1 is high-spin in the solid state and in solution at 298 K. In the solid phase, it undergoes a decrease in magnetic moment at lower temperatures, changing at ca. 206 K to a mixture of high-spin and low-spin forms, a spin-state mixture that does not change upon subsequent cooling to 5 K. Crystallographically, there is only one iron(II) site in the ambient-temperature solid-state structure, a structure that clearly shows the complex is high-spin. M?ssbauer spectral studies show conclusively that the magnetic moment change observed at lower temperatures arises from the complex changing from a high-spin state at higher temperatures to a 50:50 mixture of high-spin and low-spin states at lower temperatures. Complexes 2 and 3 are low-spin in the solid phase at room temperature. Complex 2 in the solid phase gradually changes over to the high-spin state upon heating above 295 K and is completely high-spin at ca. 470 K. In solution, variable-temperature 1H NMR spectra of 2 show both high-spin and low-spin forms are present, with the percentage of the paramagnetic form increasing as the temperature increases. Complex 3 is low-spin at all temperatures studied in both the solid phase and solution. An X-ray absorption spectral study has been undertaken to investigate the electronic spin states of [Fe[HC(3,5-Me2pz)3]2](BF4)2 and [Fe[HC(pz)3]2](BF4)2. Crystallographic information: 2 is monoclinic, P2(1)/n, a = 10.1891(2) A, b = 7.6223(2) A, c = 17.2411(4) A, beta = 100.7733(12) degrees, Z = 2; 3 is triclinic, P1, a = 12.4769(2) A, b = 12.7449(2) A, c = 13.0215(2) A, alpha = 83.0105(8) degrees, beta = 84.5554(7) degrees, gamma = 62.5797(2) degrees, Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号