首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let R be a commutative ring with nonzero identity and J(R) the Jacobson radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex set RJ(R) such that two distinct vertices x and y are adjacent if and only if 1 ? xy is not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface Sn. In this paper, we investigate the genus number of the compact Riemann surface in which JR can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that JR is toroidal.  相似文献   

2.
Let R be a commutative ring. The annihilator graph of R, denoted by AG(R), is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y), where for zR, ann R (z) = {rR: rz = 0}. In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1, 2 or 3. Also, we investigate some properties of the annihilator graph under the extension of R to polynomial rings and rings of fractions. For instance, we show that the graphs AG(R) and AG(T(R)) are isomorphic, where T(R) is the total quotient ring of R. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo n, where n ? 1.  相似文献   

3.
Let R be a commutative ring with identity. Let Γ(R) denote the maximal graph corresponding to the non-unit elements of R, i.e., Γ(R) is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we have shown that, for any finite ring R which is not a field, Γ(R) is a Euler graph if and only if R has odd cardinality. Moreover, for any finite ring R ? R 1×R 2× · · · ×R n, where the R i is a local ring of cardinality p i αi for all i, and the p i’s are distinct primes, it is shown that Aut(Γ(R)) is isomorphic to a finite direct product of symmetric groups. We have also proved that clique(G(R)’) = χ(G(R)’) for any semi-local ring R, where G(R)’ denote the comaximal graph associated to R.  相似文献   

4.
Let R be a commutative ring and Max?(R) be the set of maximal ideals of R. The regular digraph of ideals of R, denoted by \(\overrightarrow{\Gamma_{\mathrm{reg}}}(R)\), is a digraph whose vertex set is the set of all non-trivial ideals of R and for every two distinct vertices I and J, there is an arc from I to J whenever I contains a J-regular element. The undirected regular (simple) graph of ideals of R, denoted by Γreg(R), has an edge joining I and J whenever either I contains a J-regular element or J contains an I-regular element. Here, for every Artinian ring R, we prove that |Max?(R)|?1≦ωreg(R))≦|Max?(R)| and \(\chi(\Gamma_{\mathrm{ reg}}(R)) = 2|\mathrm{Max}\, (R)| -k-1\), where k is the number of fields, appeared in the decomposition of R to local rings. Among other results, we prove that \(\overrightarrow{\Gamma_{\mathrm{ reg}}}(R)\) is strongly connected if and only if R is an integral domain. Finally, the diameter and the girth of the regular graph of ideals of Artinian rings are determined.  相似文献   

5.
Let (L,∧, ∨) be a finite lattice with a least element 0. AG(L) is an annihilating-ideal graph of L in which the vertex set is the set of all nontrivial ideals of L, and two distinct vertices I and J are adjacent if and only if IJ = 0. We completely characterize all finite lattices L whose line graph associated to an annihilating-ideal graph, denoted by L(AG(L)), is a planar or projective graph.  相似文献   

6.
Let R be a commutative ring with \(1\ne 0\) and the additive group \(R^+\). Several graphs on R have been introduced by many authors, among zero-divisor graph \(\Gamma _1(R)\), co-maximal graph \(\Gamma _2(R)\), annihilator graph AG(R), total graph \( T(\Gamma (R))\), cozero-divisors graph \(\Gamma _\mathrm{c}(R)\), equivalence classes graph \(\Gamma _\mathrm{E}(R)\) and the Cayley graph \(\mathrm{Cay}(R^+ ,Z^*(R))\). Shekarriz et al. (J. Commun. Algebra, 40 (2012) 2798–2807) gave some conditions under which total graph is isomorphic to \(\mathrm{Cay}(R^+ ,Z^*(R))\). Badawi (J. Commun. Algebra, 42 (2014) 108–121) showed that when R is a reduced ring, the annihilator graph is identical to the zero-divisor graph if and only if R has exactly two minimal prime ideals. The purpose of this paper is comparison of graphs associated to a commutative Artinian ring. Among the results, we prove that for a commutative finite ring R with \(|\mathrm{Max}(R)|=n \ge 3\), \( \Gamma _1(R) \simeq \Gamma _2(R)\) if and only if \(R\simeq \mathbb {Z}^n_2\); if and only if \(\Gamma _1(R) \simeq \Gamma _\mathrm{E}(R)\). Also the annihilator graph is identical to the cozero-divisor graph if and only if R is a Frobenius ring.  相似文献   

7.
Let R be a commutative ring. In this paper, we introduce and study the compressed annihilator graph of R. The compressed annihilator graph of R is the graph AGE(R), whose vertices are equivalence classes of zero-divisors of R and two distinct vertices [x] and [y] are adjacent if and only if ann(x)∪ann(y) ? ann(xy). For a reduced ring R, we show that compressed annihilator graph of R is identical to the compressed zero-divisor graph of R if and only if 0 is a 2-absorbing ideal of R. As a consequence, we show that an Artinian ring R is either local or reduced whenever 0 is a 2-absorbing ideal of R.  相似文献   

8.
Let R be a ring with identity and J(R) denote the Jacobson radical of R. A ring R is called J-reversible if for any a, \(b \in R\), \(ab = 0\) implies \(ba \in J(R)\). In this paper, we give some properties of J-reversible rings. We prove that some results of reversible rings can be extended to J-reversible rings for this general setting. We show that J-quasipolar rings, local rings, semicommutative rings, central reversible rings and weakly reversible rings are J-reversible. As an application it is shown that every J-clean ring is directly finite.  相似文献   

9.
A subset F ? V (G) is called an R k -vertex-cut of a graph G if G ? F is disconnected and each vertex of G ? F has at least k neighbors in G ? F. The R k -vertex-connectivity of G, denoted by κ k (G), is the cardinality of a minimum R k -vertex-cut of G. Let B n be the bubble sort graph of dimension n. It is known that κ k (B n ) = 2 k (n ? k ? 1) for n ≥ 2k and k = 1, 2. In this paper, we prove it for k = 3 and conjecture that it is true for all kN. We also prove that the connectivity cannot be more than conjectured.  相似文献   

10.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

11.
A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n ∈ ?. We prove that M n (R) is nil clean if and only if R/J(R) is Boolean and M n (J(R)) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R/J(R) is ?3, B or ?3B where B is a Boolean ring, and that M n (R) is weakly nil clean if and only if M n (R) is nil clean for all n ≥ 2.  相似文献   

12.
Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + hS. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.  相似文献   

13.
For a given graph G, its line graph L(G) is defined as the graph with vertex set equal to the edge set of G in which two vertices are adjacent if and only if the corresponding edges of G have exactly one common vertex. A k-regular graph of diameter 2 on υ vertices is called a strictly Deza graph with parameters (υ, k, b, a) if it is not strongly regular and any two vertices have a or b common neighbors. We give a classification of strictly Deza line graphs.  相似文献   

14.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

15.
Let R be a commutative ring with a nonzero identity element. For a natural number n, we associate a simple graph, denoted by \(\Gamma ^n_R\), with \(R^n\backslash \{0\}\) as the vertex set and two distinct vertices X and Y in \(R^n\) being adjacent if and only if there exists an \(n\times n\) lower triangular matrix A over R whose entries on the main diagonal are nonzero and one of the entries on the main diagonal is regular such that \(X^TAY=0\) or \(Y^TAX=0\), where, for a matrix \(B, B^T\) is the matrix transpose of B. If \(n=1\), then \(\Gamma ^n_R\) is isomorphic to the zero divisor graph \(\Gamma (R)\), and so \(\Gamma ^n_R\) is a generalization of \(\Gamma (R)\) which is called a generalized zero divisor graph of R. In this paper, we study some basic properties of \(\Gamma ^n_ R\). We also determine all isomorphic classes of finite commutative rings whose generalized zero divisor graphs have genus at most three.  相似文献   

16.
Let G be a graph and let its maximum degree and maximum average degree be denoted by Δ(G) and mad(G), respectively. A neighbor sum distinguishing k-edge colorings of graph G is a proper k-edge coloring of graph G such that, for any edge uvE(G), the sum of colors assigned on incident edges of u is different from the sum of colors assigned on incident edges of v. The smallest value of k in such a coloring of G is denoted by χ(G). Flandrin et al. proposed the following conjecture that χ (G) ≤ Δ(G) + 2 for any connected graph with at least 3 vertices and GC5. In this paper, we prove that the conjecture holds for a normal graph with mad(G) < \(\tfrac{{37}}{{12}}\) and Δ(G) ≥ 7.  相似文献   

17.
A graph G is called (k,d)?-choosable if for every list assignment L satisfying ∣L(v)∣ ≥k for all vV(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this paper, it is proved that every graph of nonnegative characteristic without intersecting i-cycles for all i=3,4,5 is (3,1)?-choosable.  相似文献   

18.
Let(W,S) be a Coxeter group with S = I■J such that J consists of all universal elements of S and that I generates a finite parabolic subgroup W_I of W with w_0 the longest element of W_I. We describe all the left cells and two-sided cells of the weighted Coxeter group(W,S,L) that have non-empty intersection with W_J,where the weight function L of(W, S) is in one of the following cases:(i) max{L(s) | s ∈J} min{L(t)|t∈I};(ii) min{L(s)|s ∈J} ≥L(w_0);(iii) there exists some t ∈ I satisfying L(t) L(s) for any s ∈I-{t} and L takes a constant value L_J on J with L_J in some subintervals of [1, L(w_0)-1]. The results in the case(iii) are obtained under a certain assumption on(W, W_I).  相似文献   

19.
Let (R,m) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R (R/I) = Assh R (I). It is shown that the R- module Hht(I) I (R) is I-cofinite if and only if cd(I,R) = ht(I). Also we present a sufficient condition under which this condition the R-module H i I (R) is finitely generated if and only if it vanishes.  相似文献   

20.
Let R be a commutative ring with 1 ≠ 0 and U(R) be the set of all unit elements of R. Let m, n be positive integers such that m > n. In this article, we study a generalization of n-absorbing ideals. A proper ideal I of R is called an (m, n)-absorbing ideal if whenever a 1?a m I for a 1,…, a m R?U(R), then there are n of the a i ’s whose product is in I. We investigate the stability of (m, n)-absorbing ideals with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost Dedekind domain every (m, n)-absorbing ideal is a product of at most m ? 1 maximal ideals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号