首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Urokinase-type plasminogen activator (uPA) is a protease associated with tumor metastasis and invasion. Inhibitors of uPA may have potential as drugs for prostate, breast and other cancers. Therapeutically useful inhibitors must be selective for uPA and not appreciably inhibit the related, and structurally and functionally similar enzyme, tissue-type plasminogen activator (tPA), involved in the vital blood-clotting cascade. RESULTS: We produced mutagenically deglycosylated low molecular weight uPA and determined the crystal structure of its complex with 4-iodobenzo[b]thiophene 2-carboxamidine (K(i) = 0.21 +/- 0.02 microM). To probe the structural determinants of the affinity and selectivity of this inhibitor for uPA we also determined the structures of its trypsin and thrombin complexes, of apo-trypsin, apo-thrombin and apo-factor Xa, and of uPA, trypsin and thrombin bound by compounds that are less effective uPA inhibitors, benzo[b]thiophene-2-carboxamidine, thieno[2,3-b]-pyridine-2-carboxamidine and benzamidine. The K(i) values of each inhibitor toward uPA, tPA, trypsin, tryptase, thrombin and factor Xa were determined and compared. One selectivity determinant of the benzo[b]thiophene-2-carboxamidines for uPA involves a hydrogen bond at the S1 site to Ogamma(Ser190) that is absent in the Ala190 proteases, tPA, thrombin and factor Xa. Other subtle differences in the architecture of the S1 site also influence inhibitor affinity and enzyme-bound structure. CONCLUSIONS: Subtle structural differences in the S1 site of uPA compared with that of related proteases, which result in part from the presence of a serine residue at position 190, account for the selectivity of small thiophene-2-carboxamidines for uPA, and afford a framework for structure-based design of small, potent, selective uPA inhibitors.  相似文献   

2.
通过生物信息学对比、 分子动力学模拟和结合自由能计算分析了利伐沙班与凝血因子Xa的S4口袋部分关键残基之间动态相互作用的细节. 结果表明, 利伐沙班与凝血因子Xa结合不稳定是由S4口袋关键残基突变对疏水盒子完整性的破坏所致. 其中Trp215侧链的疏水作用对抑制剂结合的作用较大, 但对整体结构的影响短时间内较小. Tyr99虽然在结合自由能中贡献较小, 但其突变可能导致99 loop所在结构域的整体构象变化, 从而对于抑制剂或底物的结合特异性产生影响. S4口袋关键残基的不同作用在凝血因子Xa直接抑制剂的药物设计及其拮抗剂的开发中应予以充分考虑.  相似文献   

3.
非肽类凝血酶抑制剂的比较分子力场分析   总被引:6,自引:0,他引:6  
韩晓峰  刘莹  高莹  来鲁华 《化学学报》2003,61(7):1136-1136
在血栓症和止血疗法中凝血酶起重要的生物调节作用,凝血酶抑制剂由于基溶 血栓作用成为药物设计的热点,对非肽类芳基磺酸酯系列凝血酶抑制剂进行了三维 定量构效关系研究。用Autodock方法和比较分子力场分析相结合构建了该类分子的 定量构效关系模型,得到三维等值线图。模型的传统相关系数r~2=0.956,交叉验 证系数q~2=0.681, F_(4,16) = 85.985,标准偏差S = 0.158。该模型为凝血酶抑 制剂的进一步结构改造提供了有益的启示。  相似文献   

4.
5.
Intravascular clot formation is an important factor in a number of cardiovascular diseases. Therefore, the prevention of blood coagulation has become a major target for new therapeutic agents. One attractive approach is the inhibition of factor Xa (FXa), which is a key enzyme in coagulation cascade responsible for the generation of thrombin by limited proteolysis of its zymogen, prothrombin. We have investigated 1-arylsulfonyl-3-piperazinone derivatives, containing a 4-(piperidino)pyridine group in place of guanidino and/or amidino groups, and discovered compound M55113 (30a: 4-[(6-Chloro-2-naphthalenyl)sulfonyl]-1-[[1-(4-pyridinyl)-4-piperidinyl]methyl]piperazinone), as a potent inhibitor of FXa (IC50=0.06 microM) with high selectivity for FXa over trypsin and thrombin.  相似文献   

6.
In the course of development of factor Xa (FXa) inhibitor in an investigation involving the synthesis of 1-arylsulfonyl-3-piperazinone derivatives, we found new compounds containing a unique spiro skeleton. Among such compounds, (-)-7-[(6-chloro-2-naphthalenyl)sulfonyl]tetrahydro-8a-(methoxymethyl)-1'-(4-pyridinyl)-spiro[5H-oxazolo[3,2-a]pyrazine-2(3H),4'-piperidin]-5-one (28, M55529) had activity more favorable than those of previously reported compounds. The inhibitory activity of M55529 for FXa is IC(50)=2 nM, with high selectivity for FXa over thrombin and trypsin.  相似文献   

7.
Two series of tricyclic inhibitors of the serine protease thrombin, imides (+/-)-1-(+/-)-8 and lactams (+/-)-9-(+/-)-13, were analysed to evaluate contributions of orthogonal multipolar interactions with the backbone C=O moiety of Asn98 to the free enthalpy of protein-ligand complexation. The lactam derivatives are much more potent and more selective inhibitors (K(i) values between 0.065 and 0.005 microM, selectivity for thrombin over trypsin between 361- and 1609-fold) than the imide compounds (Ki values between 0.057 and 23.7 microM, selectivity for thrombin over trypsin between 3- and 67-fold). The increase in potency and selectivity is explained by the favorable occupancy of the P-pocket of thrombin by the additional isopropyl substituent in the lactam derivatives. The nature of the substituent on the benzyl ring filling the D pocket strongly influences binding potency in the imide series, with Ki values increasing in the sequence: F < OCH2O < Cl < H < OMe < OH < N(pyr)< Br. This sequence can be explained by both steric fit and the occurrence of orthogonal multipolar interactions with the backbone C[double bond, length as m-dash]O moiety of Asn98. In contrast, the substituent on the benzyl ring hardly affects the ligand potency in the lactam series. This discrepancy was clarified by the comparison of X-ray structures solved for co-crystals of thrombin with imide and lactam ligands. Whereas the benzyl substituents in the imide inhibitors are sufficiently close (< or =3.5 Angstroms) to the C=O group of Asn98 to allow for attractive orthogonal multipolar interactions, the distances in the lactam series are too large (> or =4 Angstroms) for attractive dipolar contacts to be effective.  相似文献   

8.
The H-atoms of the phenylamidinium needle of tricyclic thrombin inhibitors, which interacts with Asp189 at the bottom of the selectivity pocket S1 of the enzyme, were systematically exchanged with F-atoms in an attempt to improve the pharmacokinetic properties by lowering the pK(a) value. Both the pK(a) values and the inhibitory constants K(i) against thrombin and trypsin were decreased upon F-substitution. Interestingly, linear free energy relationships (LFERs) revealed that binding affinity against thrombin is much more affected by a decrease in pK(a) than the affinity against trypsin. Surprising effects of F-substitutions in the phenylamidinium needle on the pK(a) value of the tertiary amine centre in the tricyclic scaffold of the inhibitors were observed and subsequently rationalised by X-ray crystallographic analysis and ab initio calculations. Evidence for highly directional intermolecular C-F...CN interactions was obtained by analysis of small-molecule X-ray crystal structures and investigations in the Cambridge Structural Database (CSD).  相似文献   

9.
Human mitotic kinesin Eg5 plays an essential role in mitoses and is an interesting drug target against cancer. To find the correlation between Eg5 and its inhibitors, structure-based 3D-quantitative structure-activity relationship (QSAR) studies were performed on a series of dihydropyrazole and dihydropyrrole derivatives using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Based on the LigandFit docking results, predictive 3D-QSAR models were established, with cross-validated coefficient values (q2) up to 0.798 for CoMFA and 0.848 for CoMSIA, respectively. Furthermore, the CoMFA and CoMSIA models were mapped back to the binding sites of Eg5, which could provide a better understanding of vital interactions between the inhibitors and the kinase. Ligands binding in hydrophobic part of the inhibitor-binding pocket were found to be crucial for potent ligand binding and kinases selectivity. The analyses may be used to design more potent EG5 inhibitors and predict their activities prior to synthesis.  相似文献   

10.
The structure-based design of multivalent ligands offers an attractive strategy toward high affinity protein inhibitors. The spatial arrangement of the receptor-binding sites of cholera toxin, the causative agent of the severe diarrheal disease cholera and a member of the AB(5) bacterial toxin family, provides the opportunity of designing branched multivalent ligands with 5-fold symmetry. Our modular synthesis enabled the construction of a family of complex ligands with five flexible arms each ending with a bivalent ligand. The largest of these ligands has a molecular weight of 10.6 kDa. These ligands are capable of simultaneously binding to two toxin B pentamer molecules with high affinity, thus blocking the receptor-binding process of cholera toxin. A more than million-fold improvement over the monovalent ligand in inhibitory power was achieved with the best branched decavalent ligand. This is better than the improvement observed earlier for the corresponding nonbranched pentavalent ligand. Dynamic light scattering studies demonstrate the formation of concentration-dependent unique 1:1 and 1:2 ligand/toxin complexes in solution with no sign of nonspecific aggregation. This is in complete agreement with a crystal structure of the branched multivalent ligand/toxin B pentamer complex solved at 1.45 A resolution that shows the specific 1:2 ligand/toxin complex formation in the solid state. These results reiterate the power of the structure-based design of multivalent protein ligands as a general strategy for achieving high affinity and potent inhibition.  相似文献   

11.
The proper filling of apolar pockets at enzyme active sites is central for increasing binding activity and selectivity of hits and leads in medicinal chemistry. In our structure-based design approach toward the generation of potent enzyme inhibitors, we encountered a variety of challenges in gaining suitable binding affinity from the occupation of such pockets. We summarize them here for the first time. A fluorine scan of tricyclic thrombin inhibitors led to the discovery of favorable orthogonal dipolar C-F...CO interactions. Efficient cation-pi interactions were established in the S4 pocket of factor Xa, another serine protease from the blood coagulation cascade. Changing from mono- to bisubstrate inhibitors of catechol O-methyltransferase, a target in the L-Dopa-based treatment of Parkinson's disease, enabled the full exploitation of a previously unexplored hydrophobic pocket. Conformational preorganization of a pocket at an enzyme active site is crucial for harvesting binding affinity. This is demonstrated for two enzymes from the nonmevalonate pathway of isoprenoid biosynthesis, IspE and IspF, which are pursued as antimalarial targets. Disrupting crystallographically defined water networks on the way into a pocket might cost all of the binding free enthalpy gained from its occupation, as revealed in studies with tRNA-guanine transglycosylase, a target against shigellosis. Investigations of the active site of plasmepsin II, another antimalarial target, showed that principles for proper apolar cavity filling, originally developed for synthetic host-guest systems, are also applicable to enzyme environments.  相似文献   

12.
Molecular dynamics (MD) simulations followed by molecular mechanics generalized Born surface area (MM-GBSA) analyses have been carried out to study the selectivity of two neutral and weakly basic P1 group inhibitors (177 and CDA) to thrombin and trypsin. Detailed binding free energies between these inhibitors and individual protein residues are calculated by using a per-residue basis decomposition method. The analysis of the detailed interaction energies provides insight on the protein-inhibitor-binding mechanism and helps to elucidate the basis for achieving selectivity through interpretation of the structural and energetic results from the simulations. The study shows that the dominant factor of selectivity for both inhibitors is van der Waals energy, which suggests better shape complementarity and packing with thrombin. Nonpolar solvation free energy and total entropy contribution are also in favor of selectivity, but the contributions are much smaller. Binding mode and structural analysis show that 177 binds to thrombin and trypsin in a similar binding mode. In contrast, the CDA binds to thrombin and trypsin in very different modes.  相似文献   

13.
Intravascular clot formation is an important event in a number of cardiovascular diseases. The prevention of blood coagulation has become a major target for new therapeutic agents. Factor Xa (FXa) is a trypsin-like serine protease that plays a key role in the blood coagulation cascade and represents an attractive target for anticoagulant drug development. We have investigated substituents in the central part of a lead compound (3: M55113), and discovered that compound M55551 (34: (R)-4-[(6-Chloro-2-naphthalenyl)sulfonyl]-6-oxo-1-[[1-(4-pyridinyl)-4-piperidinyl]methyl]-2-piperazinecarboxylic acid) is a potent inhibitor of FXa (IC(50)=0.006 microM), with high selectivity for FXa over trypsin and thrombin. The activity of this compound is ten times more powerful than the lead compound.  相似文献   

14.
The P2Y(1) receptor is a member of the P2Y family of nucleotide-activated G protein-coupled receptors, and it is an important therapeutic target based on its broad tissue distribution and essential role in platelet aggregation. We have designed a set of highly selective and diverse pharmacological tools for studying the P2Y(1) receptor using a rational approach to ligand design. Based on the discovery that bisphosphate analogues of the P2Y(1) receptor agonist, ADP, are partial agonists/competitive antagonists of this receptor, an iterative approach was used to develop competitive antagonists with enhanced affinity and selectivity. Halogen substitutions of the 2-position of the adenine ring provided increased affinity while an N(6) methyl substitution eliminated partial agonist activity. Furthermore, various replacements of the ribose ring with symmetrically branched, phosphorylated acyclic structures revealed that the ribose is not necessary for recognition at the P2Y(1) receptor. Finally, replacement of the ribose ring with a five member methanocarba ring constrained in the Northern conformation conferred dramatic increases in affinity to both P2Y(1) receptor antagonists as well as agonists. These combined structural modifications have resulted in a series of selective high affinity antagonists of the P2Y(1) receptor, two broadly applicable radioligands, and a high affinity agonist capable of selectively activating the P2Y(1) receptor in human platelets. Complementary receptor modeling and computational ligand docking have provided a putative structural framework for the drug-receptor interactions. A similar rational approach is being applied to develop selective ligands for other subtypes of P2Y receptors.  相似文献   

15.
The β(3)-adrenegic receptor (β(3)-AR) selectivity over β(1)- and β(2)-ARs has been the most important aspect for successful therapeutic agents for obesity and type-II diabetes, as the concomitant activation of β(1)- and β(2)-ARs would lead to undesirable side effects, such as increased heart rate. In order to explore the structural basis for the β-AR subtype selectivity of agonists and anatagonists, a three-dimensional structure of until date unresolved β(3)-AR has been modeled, compared with the resolved X-ray structures of β(1)- and β(2)-ARs, and used to study its stereoselective binding with until-date known diverse classes of representative agonists and antagonist. The obtained binding structures and calculated prime molecular mechanics-generalized Born surface area (MM-GBSA) binding free energies consistently reveal that while the subtype selectivity is strongly governed by the residues present in the extracellular ends of TM3, TM5, TM6, TM7 helices and of the ECL2 domain, the binding affinity is governed by the conserved residues present in the deep pocket limiting the degree of conformational and rotational freedoms to the bound ligand. The study demonstrates that the key structural requirements for the β(3)-selectivity are: (i) a negatively ionizable group (NIG) for direct interaction with β(3)-specific residue R315(6.58), (ii) a linker (9-10 ? length) between the protonated amine and NIG, and (iii) a substituted aryl ring directly attached to the β-hydroxyl carbon. The new computational insights acquired in this study are expected to be valuable in structure-based rational design of high-affinity agonists and antagonists with pronounced β(3)-selectivity for successful therapeutic agents for type-II diabetes and obesity.  相似文献   

16.
17.
Blood coagulation is an essential physiological process for hemostasis; however, abnormal coagulation can lead to various potentially fatal disorders, generally known as thromboembolic disorders, which are a major cause of mortality in the modern world. Recently, the FDA has approved several anticoagulant drugs for Factor Xa (FXa) which work via the common pathway of the coagulation cascade. A main side effect of these drugs is the potential risk for bleeding in patients. Coagulation Factor IXa (FIXa) has recently emerged as the strategic target to ease these risks as it selectively regulates the intrinsic pathway. These aforementioned coagulation factors are highly similar in structure, functional architecture, and inhibitor binding mode. Therefore, it remains a challenge to design a selective inhibitor which may affect only FIXa. With the availability of a number of X-ray co-crystal structures of these two coagulation factors as protein–ligand complexes, structural alignment, molecular docking, and pharmacophore modeling were employed to derive the relevant criteria for selective inhibition of FIXa over FXa. In this study, six ligands (three potent, two selective, and one inactive) were selected for FIXa inhibition and six potent ligands (four FDA approved drugs) were considered for FXa. The pharmacophore hypotheses provide the distribution patterns for the principal interactions that take place in the binding site. None of the pharmacophoric patterns of the FXa inhibitors matched with any of the patterns of FIXa inhibitors. Based on pharmacophore analysis, a selectivity of a ligand for FIXa over FXa may be defined quantitatively as a docking score of lower than −8.0 kcal/mol in the FIXa-grids and higher than −7.5 kcal/mol in the FXa-grids.  相似文献   

18.
We have developed a method that we have called Protein Alpha Shape Similarity Analysis (PASSA), that identifies interaction sites that can be utilised to achieve selectivity towards a protein. We have shown that this method is able to identify residues of tyrosine kinases that interact with known selective inhibitors using the following test cases: Abelson (Abl) kinase in complex with STI-571 and Janus kinase 2 (Jak2) in complex with AG-490. The 3D structures of the tyrosine kinase domains of Tyrosine kinase 2 (Tyk2) and Jak2 have been predicted by homology modelling. Computational docking of AG-490 and a set of tyrphostins known not to inhibit Jak2 indicated that our homology models are able to separate inhibitors from non-inhibitors. PASSA has also been used to identify unique properties of Tyk2. According to our results, interactions with hydrogen acceptors and donors on the following residues can be utilised to achieve selectivity towards Tyk2: Y955, E1053, D1062 and S1063. These residues are placed close to non-conserved hydrophobic pockets. The PASSA results, together with results from Multiple Copy Simultaneous Search (MCSS) were used to suggest functional groups of a selective Tyk2 inhibitor.  相似文献   

19.
Density functional theory and a polarizable continuum model are used to (i) understand the affinity modulating mechanisms of the interaction between the metal-ion-dependent adhesion site (MIDAS) of a selected integrin, lymphocyte function-associated antigen-1 (LFA-1) and a ligand mimetic acetate molecule and to (ii) propose a new, promising family of inhibitors to block the interaction of the integrin with intercellular adhesion molecule-1 (ICAM-1). We quantify the effect of isolated factors, such as the metal coordination, the nature of the ligand or the cation present on the MIDAS, and the effect of the permittivity of the media. We show that the affinity for ligand decreases when metal coordination changes from the open conformation to the closed conformation. In addition, Mn2+ and Zn2+ showed to be good competitors for the octahedrically coordinated Mg2+ and yielded excellent affinity values, whereas Ca2+ in an octahedric environment would decrease the affinity for the ligand. Our affinity studies of the open MIDAS showed that nitronate-derived or carboxylic acid-containing ligands may represent new promising scaffolds of future inhibitors. Finally, we show that affinities are always highly favored by low-dielectric environments, which explains the propensity of MIDAS motifs to be surrounded by hydrophobic residues in integrins and highlights the importance of including hydrophobic groups in the inhibitors.  相似文献   

20.
The number of negatively charged metal-bound Asp/Glu residues determines the net charge of the carboxylate-rich metal-binding site, which has been found to play a role in enhancing the affinity and/or selectivity of a protein cavity for a given metal cofactor. Therefore, it is of interest to know the maximum number of carboxylates that could bind to a given metal (M(q)()(+)) of charge q and the key factors determining this upper limit in protein cavities, which are usually relatively buried. Using density functional theory combined with the continuum dielectric method to compute the H(2)O --> CH(3)COO(-) exchange free energies, the maximum number of carboxylates bound to M(q)()(+) in a relatively buried metal-binding site is found to depend on (i) the metal charge, q, (ii) the carboxylate-binding mode, and (iii) the first-shell carboxylate-second-shell ligand interactions. The maximum number of carboxylates bound to M(q)()(+) in a fully/partially solvent inaccessible protein cavity would not likely exceed q + 2 if (a) the metal-bound Asp/Glu side chains are hydrogen bonded to a Lys/Arg side chain or several peptide backbone amides/Asn/Gln side chains in the metal's second coordination shell or (b) at least one acidic residue binds bidentately, as opposed to monodentately, to the metal cofactor. This number is reduced to q + 1 in the absence of stabilizing interactions from outer-shell ligand(s) and if all the carboxylates are bound monodentately to the metal cofactor in a buried cavity. The computational results are consistent with findings from a PDB survey of uni-, di-, and trivalent metal-binding sites containing Asp/Glu residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号