首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unified chaotic system incorporates the behaviors of the Lorenz, the Chen and the Lü chaotic systems. This paper deals with the synchronization of two identical unified chaotic systems where the slave system is assumed to have a single input. A sliding mode controller is proposed to synchronize the two systems. The asymptotic convergence to zero of the errors between the states of the master and the slave systems is shown. Simulations results are presented to illustrate the proposed controller; they indicate that the designed controller is able to synchronize the unified chaotic systems. Also, simulation results show that the proposed control scheme is robust to random bounded disturbances acting on the master system. Moreover, the proposed scheme is applied to the secure communications field, where simulation results indicate that the proposed scheme is effective.  相似文献   

2.
3.
This paper presents an adaptive feedback control scheme for the synchronization of the chaotic system consisting of Van der Pol oscillators coupled to linear oscillators with cubic term when the parameters of the master system are unknown and different with the those of the slave system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two slightly mismatched chaotic systems asymptotically synchronized. This method is efficient and easy to implement. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

4.
In this work, we discuss the stability conditions for a nonlinear fractional-order hyperchaotic system. The fractional-order hyperchaotic Novel and Chen systems are introduced. The existence and uniqueness of solutions for two classes of fractional-order hyperchaotic Novel and Chen systems are investigated. On the basis of the stability conditions for nonlinear fractional-order hyperchaotic systems, we study synchronization between the proposed systems by using a new nonlinear control technique. The states of the fractional-order hyperchaotic Novel system are used to control the states of the fractional-order hyperchaotic Chen system. Numerical simulations are used to show the effectiveness of the proposed synchronization scheme.  相似文献   

5.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

6.
In this paper, an adaptive algorithm is proposed for synchronization of chaotic systems with different orders. A modular adaptive control strategy is applied to make states of the slave system track those of the master, despite the unknown parameters. One of the most advantages of the modularity approach, which is applied for the first time in chaos synchronization, is its flexibility in choosing identification and control modules and designing them completely independently. In this paper, a modified recursive least square algorithm is used to identify the unknown parameters of the slave system, and the control module is designed by means of two different algorithms. First it is designed based on active control method, and then, in order to synchronize with a lower energy, we design an optimal controller. The two methods are applied on a practical case study, and the results are compared. Two different dimensional neuron models, the HR neuron model and the cable model of cylindrical cell, are considered as the master and slave systems, respectively. Simulation results confirm the effectiveness of the proposed method.  相似文献   

7.
In this paper, an adaptive control scheme is proposed for the synchronization of two single-degree-of-freedom oscillators with unknown parameters. We only assume that the master system has the bounded solutions, which is generally satisfied for chaotic systems. Unlike the existing literature, the boundedness of the states of the slave system with control input is not necessarily known in advance. The boundedness of the controlled states is rigorously proved. The unknown parameters not only in the slave system but also in the master system are estimated by designing adaptive laws. By choosing appropriate Lyapunov function and employing Barbalat’s lemma, it is theoretically shown that the synchronization errors can converge to zero asymptotically. Finally, two illustrative examples are provided to demonstrate the effectiveness of the proposed adaptive control design.  相似文献   

8.
This paper investigates the synchronization of coupled unified chaotic systems via active control. The synchronization is given in the slave–master scheme and the controller ensures that the states of the controlled chaotic slave system exponentially synchronize with the state of the master system. Numerical simulations are provided for illustration and verification of the proposed method.  相似文献   

9.
This paper addresses problems of control and synchronization for a new modified hyperchaotic Lü system with uncertain parameters. This new modified uncertain hyperchaotic Lü system is stabilized to its unique unstable equilibrium by using adaptive control. Furthermore, an adaptive control law and a parameter estimation update law are derived to synchronize two identical modified hyperchaotic Lü systems with uncertain parameters. Numerical examples are proposed to demonstrate and verify the theoretical analysis.  相似文献   

10.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

11.
This paper brings attention to hyperchaos anti-synchronization between two identical and different hyperchaotic systems by using adaptive control. The sufficient conditions for achieving the anti-synchronization of two hyperchaotic systems are derived based on Lyapunov stability theory. An adaptive control law and a parameter update rule for unknown parameters are introduced such that the hyperchaotic Chen system is controlled to be the hyperchaotic Lü system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

12.
In this paper our aim is to show the viability of preserving the hyperbolicity of a master/salve pair of chaotic systems under different types of nonlinear modifications to its Jacobian matrix. Furthermore, we shall provide evidence to show that linear control methods used to achieve synchronization between master and slave systems are preserved under such transformations. We propose to modify both the coefficients of the Jacobian matrix’s associated characteristic polynomial through power evaluation as well as through matrix polynomial evaluation. To illustrate the results we present examples of several well known chaotic and hyperchaotic dynamical systems that have been modified using both methodologies.  相似文献   

13.
In this paper, we consider the problem of synchronizing a master–slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master–slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master–slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master–slave chaotic system based on Chua’s circuit.  相似文献   

14.
In this paper, a robust adaptive sliding mode controller (RASMC) is introduced to synchronize two different chaotic systems in the presence of unknown bounded uncertainties and external disturbances. The structure of the master and slave chaotic systems has no restrictive assumption. Appropriate adaptation laws are derived to tackle the uncertainties and external disturbances. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding control law is designed to ensure the occurrence of the sliding motion even when both master and slave systems are perturbed with unknown uncertainties and external disturbances. Since the conventional sliding mode controllers contain the sign function, the undesirable chattering is occurred. We propose a new simple adaptive scheme to eliminate the chattering. Finally, numerical simulations are presented to verify the usefulness and applicability of the proposed control strategy.  相似文献   

15.
The reduced-order synchronization problem of two chaotic systems (master–slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.  相似文献   

16.
This work presents chaos synchronization between two different hyperchaotic systems using adaptive control. The sufficient conditions for achieving synchronization of two high dimensional chaotic systems are derived based on Lyapunov stability theory, and an adaptive control law and a parameter update rule for unknown parameters are given such that generalized Henon–Heiles system is controlled to be hyperchaotic Chen system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

17.
In this paper, a practical projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive slave chaotic system subject to dead-zone nonlinearity in the input channel is proposed using only the measurable output of the master system thanks to a suitable observer. A practical projective synchronization between the master and slave systems is achieved by an adequate fuzzy adaptive control system. The underlying parameter adaptation design as well as stability analysis are carried out using a Lyapunov based approach. Unlike the previous works, in the design of the proposed synchronization scheme, we do not require to know the uncertainties function and that the dynamics of the original synchronization error are strictly positive real (SPR). In fact, herein, the uncertainties function is estimated by a fuzzy adaptive system and the dynamics of the original synchronization error are augmented by a low pass filter designed to satisfy the SPR condition. Simulation results are given to show the effectiveness of the proposed practical projective synchronization scheme.  相似文献   

18.
This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

19.
In this paper, a hybrid control based on pulse width modulator (PWM) is proposed to synchronize a class of master–slave chaotic systems with uncertainties. We use the Genetic Algorithm (GA) together with fuzzy logic to tune the switching time of PWM mode controller such that the output response of master–slave chaotic system can be synchronized. Finally, an example, uncertain master–slave Duffing–Holmes chaos system, is proposed to show the proposed method’s effectiveness for chaotic synchronization.  相似文献   

20.
Analysis of the Reliability of a Three-Component System with Renewal   总被引:1,自引:0,他引:1  
New results are reported from an investigation of a three-component system consisting of one master control element and two slave elements with priority servicing by a single repair facility. The stationary probabilities of the system states are determined, along with the readiness factor and the average time between failures (average uptime).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号