首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Engineering appropriate shape and size of three‐dimensional inorganic nanostructures materials is of one the main critical problems in pursuing high‐performance electrode materials. Herein, we fabricate a metal‐organic framework derived cobalt oxide (Co3O4) are grown on copper oxide nanowire (CuO NWs) supported on the surface of 3D copper foam substrate. The highly aligned CuO NWs were prepared by using electrochemical anodization of copper foam in ambient temperature and followed by MOF Co3O4 was grown via a simple in situ solution deposition then consequent calcination process. The obtained binder‐free 3D CuO NWs@Co3O4 nanostructures were further characterized by using X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy, and transmission electron microscopy. Furthermore, electrochemical sensing of glucose was studied by using Cyclic Voltammetry, and chronoamperometry techniques. Interestingly, 3D CuO NWs@Co3O4 electrode exhibits excellent performance for the oxidation of glucose compared with individual entities. The proposed sensor shows wide linear ranges from 0.5 μM to 0.1 mM with the sensitivity of 6082 μA/μM and the lowest detection limit (LOD) of 0.23 μM was observed with the signal to noise ratio, (S/N) of 3. The superior catalytic oxidation of glucose mainly is endorsed by the excellent electrical conductivity and synergistic effect of the Co3O4 and CuO NWs.  相似文献   

2.
A non-enzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution. The morphology of the modified copper electrode was studied by scanning electron microscopy, and its electrochemical behavior by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode enables direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide. At this potential, the sensor is highly selective to glucose even in the presence of ascorbic acid, uric acid, or dopamine which are common interfering species. The sensor displays a sensitivity of 761.9 μA mM?1 cm?2, a linear detection range from 2 μM to 20 mM, a response time of <1 s, and a detection limit of 1 μM (S/N = 3). It was tested for determination of glucose level in blood serum.  相似文献   

3.
A sensitive voltammetric method was developed to determine maltose in beverage products using a carbon nanostructured screen‐printed electrode modified with CuO/glucose oxidase/maltase/SiO2 biocomposite film. Adding CuO particles was done to possess catalytic activity toward hydrogen peroxide. Electrode modified by glucose oxidase and maltase shows a good response to maltose. A well‐defined reduction peak was registered at the potential of ?0.55 V (vs. Ag/AgCl) which intensity increases linearly with the concentration of maltose ranging from 0.01 to 0.1 mmol L?1. The calculated limit of detection was 0.005 mmol L?1. Tested on the beer samples, the developed CuO/glucose oxidase/maltase/SiO2 biocomposite film covered carbon nanostructured screen‐printed electrode is showed to be a prospective sensitive element of the third generation biosensor for maltose.  相似文献   

4.
Commercially available micro-sized CuO powder was dispersed in the mixture of ethanol and protonated betaine bis((trifluoromethyl)sulfonyl)amide ([Hbet][TFSA]), a hydrophobic amide-type protic ionic liquid (IL), to prepare a composite paste for the modification of screen-printed carbon electrode (SPCE) via spin-coating. The fabricated SPCE\CuO−IL composite-based electrode showed a comparable activity as that of the nanonized metal-oxide based electrodes towards the electrochemical oxidation of glucose in alkaline solutions. Hydrodynamic chronoamperometry tests performed at +0.55 V showed a linear dynamic response of the electrode over the concentration range of 1 μM–2.8 mM with a sensor-sensitivity of 0.16 μA μM−1 in 0.1 M NaOH. The data also showed a linear dynamic response over the concentration range of 1 μM–4.6 mM with a sensor-sensitivity of 0.10 μA μM−1 in 0.1 M NaOH with 0.1 M NaCl, indicating that the major interferant Cl had negligible effects on glucose detection . Ascorbic acid (AA) (in the physiological level) and ethanol also did not interfere with the detection. Detection of glucose in real samples showed the recovery ratios higher than 95 %. This study has clearly demonstrated that commercial CuO powder without nanostructure can provide sufficient reactivity to the electrocatalytic oxidation of glucose by using IL as the organic binder. Facile preparation of the micro-sized metal oxide-modified electrodes can be accordingly pursued.  相似文献   

5.
6.
The electrodeposition method was firstly applied to obtain uniform cube-shaped copper nanoparticles on conductive glass (ITO), and then a layer of tiny nickel nanoparticles. A bimetallic composite electrode (Cu−Ni/ITO), characterized by TEM, XPS and XRD, was prepared to construct the non-enzyme electrochemical glucose sensor with high catalytic activity. The catalytic performance of Cu−Ni/ITO had been greatly improved, probably due to the synergistic bimetallic catalysis effect. The electrode had a satisfactory linear response in the range of 2.5×10−7 M to 2.6×10−3 M, with detection limit as low as 67 nM. Besides, Cu−Ni/ITO had good anti-interference ability and reproducibility, indicating the promising application for glucose detection in practical samples.  相似文献   

7.
《Electroanalysis》2018,30(8):1811-1819
Novel copper‐palladium nanoparticles modified glassy carbon electrodes (Cu−Pd/GC) with enhanced nonenzymatic sensing for glucose were facilely prepared by one‐step electrodeposition. The structure and composition of the prepared nanoparticles were characterized by XRD, SEM, TEM and EDS, respectively. The electrode modified process was characterized by electrochemical impedance spectroscopy. Cyclic voltammetry and chronoamperometric experiments were used to evaluate the electrocatalytic activities of the electrodes toward glucose. The surface morphology and the electrocatalytic activities of Cu−Pd/GC was compared to Pd and Cu nanoparticles modified glassy carbon electrodes (Pd/GC and Cu/GC), respectively. Thanks to homogeneous distribution of Cu−Pd nanoparticles and the synergistic effect of Cu and Pd atoms, Cu−Pd/GC exhibited the highest sensitivity (298 μA mM−1 cm−2) and the widest linear amperometric response (0.01 mM to 9.6 mM, R2=0.996) toward glucose compared to Pd/GC and Cu/GC. The detection limit of Cu−Pd/GC was 0.32 μM (S/N=3). In addition, the as‐prepared Cu−Pd/GC glucose sensor also exhibited exceptional capabilities of anti‐interference, reproducibility and long‐term stability. The as‐prepared sensor was also evaluated for determination of glucose concentration in human blood serum samples, which exhibited high reliability and accuracy, having great potential in clinical application.  相似文献   

8.
《Electroanalysis》2017,29(10):2254-2260
In this study, we have carried out electrodeposition of tantalum (Ta) nanostructures on pencil lead electrode in non‐aqueous media at room temperature by applying a constant potential. The deposited Ta on pencil lead was examined for the catalytic effect regarding hydrogen peroxide (H2O2) reduction with voltammetry and amperometry. Ta/pencil lead electrode exhibited amperometric sensitivity of 0.317 μA mM−1 cm−2 and fast response time of 0.75 s, where selective detection of H2O2 was fulfilled without interruption from common electroactive biomaterials such as O2, uric acid, ascorbic acid, dopamine, acetamidophenol, and glucose. For practical applications, the dynamic concentration changes of H2O2 during catalase and glucose oxidase‐involved reactions, either eliminating or producing H2O2, were successfully traced in real time with as‐prepared electrode. From the kinetics study for catalase and glucose oxidase, we evaluated Michaelis constants (K mapp) as 7.8 mM for catalase and 37 mM for glucose oxidase, respectively.  相似文献   

9.
Selective production of hydrogen by oxidative steam reforming of methanol (OSRM) was studied over Cu/SiO2 catalyst using fixed bed flow reactor. Textural and structural properties of the catalyst were analyzed by various instrumental methods. TPR analysis illustrates that the reduction temperature peak was observed between 510?K and 532?K at various copper loadings and calcination temperatures and the peaks shifted to higher temperature with increasing copper loading and calcination temperature. The XRD and XPS analysis demonstrates that the copper existed in different oxidation states at different conditions: Cu2O, Cu0, CuO and Cu(OH)2 in uncalcined sample; CuO in calcined sample: Cu2O and metallic Cu after reduction at 600?K and Cu0 and CuO after catalytic test. TEM analysis reveals that at various copper loadings, the copper particle size is in the range between 3.0?nm and 3.8?nm. The Cu particle size after catalytic test increased from 3.6 to 4.8?nm, which is due to the formation of oxides of copper as evidenced from XRD and XPS analysis. The catalytic performance at various Cu loadings shows that with increasing Cu loading from 4.7 to 17.3?wt%, the activity increases and thereafter it decreases. Effect of calcination shows that the sample calcined at 673?K exhibited high activity. The O2/CH3OH and H2O/CH3OH molar ratios play important role in reaction rate and product distribution. The optimum molar ratios of O2/CH3OH and H2O/CH3OH are 0.25 and 0.1, respectively. When the reaction temperature varied from 473 to 548?K, the methanol conversion and H2 production rate are in the range of 21.9–97.5% and 1.2–300.9?mmol?kg?1?s?1, respectively. The CO selectivity is negligible at these temperatures. Under the optimum conditions (17.3?wt%, Cu/SiO2; calcination temperature 673?K; 0.25 O2/CH3OH molar ratio, 0.5 H2O/CH3OH molar ratio and reaction temperature 548?K), the maximum hydrogen yield obtained was 2.45?mol of hydrogen per mole of methanol. The time on stream stability test showed that the Cu/SiO2 catalyst is quite stable for 48?h.  相似文献   

10.
《Electroanalysis》2018,30(1):187-193
This work reports about the performance of a Ni/Cu‐modified screen printed electrodes (SPE/Ni/Cu), prepared by physical vapor deposition (PVD) in an oblique angle configuration (OAD), for non‐enzymatic glucose sensing applications. SPE/Ni/Cu electrodes showed an excellent reversibility and a catalytic behavior for detection of glucose that were controlled by the diffusion of reactants up to the active sites at the electrode surface. The study with a flow injection analysis (FIA) setup of the main experimental variables affecting the detection process has shown that the developed electrode system had an excellent glucose sensitivity of 1.04 A M−1cm−2 (R2:0.999), a linear response up to 1 mM, a limit of detection of 0.33 μM and a time of analysis of ca. 30 s per sample. The selectivity of the sensor was checked against various interferences, including ascorbic acid, uric acid, acetaminophen and other sugars, in all cases with excellent results. The feasibility of using this sensor for practical applications was successfully confirmed by determining the glucose concentration in different commercial beverages.  相似文献   

11.
A highly sensitive and fast-response biosensor based on cupric hydroxide/oxide (Cu(OH)2/CuO) nanotube arrays (CNA) was successfully fabricated in this work. CNAs were prepared on copper electrode surface by simply immersing copper electrode in an aqueous solution of NaOH and (NH4)2S2O8. The morphology and the composition of the CNAs were characterized by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD), respectively. The electrocatalytic activity of the CNA modified copper electrodes (CNA/Cu) towards glucose oxidation was investigated by cyclic voltammetry and amperometry. The CNA/Cu showed good non-enzymatic electrocatalytic responses to glucose in alkaline media and can be used for the development of enzyme-free glucose sensors.  相似文献   

12.
A novel and simple glucose sensor based on layer-by-layer (LBL) assembly of Cu and MnO2 nanoparticles on the glassy carbon electrode (Cu/MnO2/GCE) was constructed. The morphology and composition of the Cu and Cu/MnO2 on the electrode surface were observed by scanning electron microscopy and X-ray diffraction. Electrochemical experiments showed that the proposed Cu/MnO2/GCE exhibited excellent electrocatalytic properties to glucose. The oxidation peak currents of glucose on the Cu/MnO2/GCE were linearly related to glucose concentration in a wider linearity range from 0.25???M to 1.02?mM with a correlation coefficient of 0.9977. The sensitivity and detection limit was 26.96???A?mM?1 and 0.1???M (S/N?=?3), respectively. The Cu/MnO2 nanocomposite-modified electrode presented attractive features such as high sensitivity, stability, reproducibility, and interference-free property. The applicability of the proposed method to the determination of glucose in serum samples was demonstrated with satisfactory results.  相似文献   

13.
Novel copper (Cu) film composed of pillar‐like structure was synthesized on indium‐doped tin oxide (ITO) substrate by electrodeposition in acetate bath with proline as additive for the first time and used to construct nonenzymatic glucose sensor. When applied to detect glucose, such prepared electrode showed low operating potential (0.4 V), high sensitivity (699.4499 µA mM−1 cm−2), and fast response time (<3 s) compared with other Cu‐based electrodes. In addition, the prepared electrode also offered good anti‐interference ability to ascorbic acid, uric acid and acetaminophen. Present study provides new insights into the control of Cu film morphology for sensor fabrication.  相似文献   

14.
Fluorine tin oxide (FTO) electrode modified by copper oxide microfibers (CuO-MFs) composed of numerous interconnected CuO nanoparticles (CuO-NPs) for nonenzymatic glucose sensor was prepared by electrospinning precursor containing high percentage content of copper nitrate with subsequent calcination. The results of scanning electron microscope (SEM) showed the size of CuO particles composing CuO-MFs depended on the percentage content of copper nitrate in precursor solution. With increasing the percentage content of copper nitrate, the interconnected CuO-NPs would gradually replace the large-size CuO particles to accumulate the CuO-MFs, which have the potential to provide larger surface area and more reaction sites for electrocatalytic activity toward glucose. As a glucose sensor, the CuO-MFs modified FTO electrode prepared by 40 wt.% of copper nitrate exhibited a high sensitivity of 2321 μA mM−1 cm−2 with a low detection limit of 2.2 nM (signal/noise ratio (S/N) = 3). Additionally, the application of the CuO-MFs modified FTO electrode as a glucose sensor for biological samples was demonstrated with satisfactory results.  相似文献   

15.
The mechanism of catalytic dismutation of superoxide anion by copper(II) complex of 12-(4′-nitro)-benzyl-1,4,7,10-tetraazacyclotridecane-11,13-dione was studied by using pulse radiolysis and cyclic voltammetry. The redox potential of Cu(II)/Cu(III) was obtained to be E0=0.590 V (SCE) in solution of 0.5 mol·dm−3 Na2SO4. The rate constant of catalytic dismutation was determined to be kcat=1.9×106 (pH=7.0) and 1.1×106 mol·dm3·s−1 (pH=7.8) by pulse radiolysis and it was suggested that mechanism of catalytic dismutation of O2 is alternate oxidation and reduction of Cu(II) complex by O2.  相似文献   

16.
Cu/活性炭催化剂:水合肼还原制备及催化甲醇氧化羰基化   总被引:1,自引:0,他引:1  
以活性炭为载体,水合肼为还原剂制备了负载型Cu/活性炭催化剂,考察了水合肼/硝酸铜物质的量的比对催化甲醇气相氧化羰基化性能的影响,并采用XRD、XPS、H2-TPR和SEM等手段对催化剂进行了表征。结果表明,不加入还原剂水合肼时,催化剂中仅有CuO;随着水合肼/硝酸铜物质的量的比的增加,二价铜逐步被还原为Cu2O和/或单质Cu0,未被还原的Cu(OH)2在催化剂干燥过程中分解形成分散态CuO存在于催化剂表面。当水合肼/硝酸铜物质的量的比为0.75时,催化剂的催化性能最好,碳酸二甲酯的时空收率为120.62 mg.(g.h)-1,选择性为74.51%,甲醇转化率达到3.88%。在93 h反应时间内,催化剂都保持了较高的反应活性和选择性。此时铜物种以Cu2O和分散态CuO为主,Cu2O是主要的活性物种。  相似文献   

17.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

18.
The selective catalytic reduction of NO with ammonia in the presence of oxygen has been carried out on Cu-loaded dealuminated Y zeolite catalysts. Copper was introduced by the usual ion-exchange procedure with an aqueous solution of cupric acetate. On deeply dealuminated USY zeolites, Cu2+ was supported in the amount larger than 2Cu/Al=2, resulting in the formation of CuO fine particles in addition to the isolated and dimer Cu2+ species. The specific catalytic activity per surface copper on the CuO particles was very high compared with these Cu2+ species. NO adsorption measurement revealed the higher dispersion of CuO on the deeply dealuminated USY than on SiO2, which made Cu/USY a better catalyst for the reduction of NO. The reaction intermediates were investigated through the IR spectra of adsorbed species.  相似文献   

19.
The selective catalytic reduction of NO with ammonia in the presence of oxygen has been carried out on Cu-loaded dealuminated Y zeolite catalysts. Copper was introduced by the usual ion-exchange procedure with an aqueous solution of cupric acetate. On deeply dealuminated USY zeolites, Cu2+ was supported in the amount larger than 2Cu/Al = 2, resulting in the formation of CuO fine particles in addition to the isolated and dimer Cu2+ species. The specific catalytic activity per surface copper on the CuO particles was very high compared with these Cu2+ species. NO adsorption measurement revealed the higher dispersion of CuO on the deeply dealuminated USY than on SiO2, which made Cu/USY a better catalyst for the reduction of NO. The reaction intermediates were investigated through the IR spectra of adsorbed species.  相似文献   

20.
The electrochemical properties of violuric acid (VA) have been investigated at pH 4.0–10.0 by using cyclic voltammetry on a glassy carbon electrode. The peak current was proportional to the square root of the potential scan rate. The calculated diffusion coefficient was 2.0±0.7×10−6 cm2 s−1. The formal oxidation–reduction potential of VA was 0.63 V versus SCE at pH 7.0. The kinetics of VA interaction with reduced glucose oxidase (GO) was explored in the electrocatalytical system. A typical electrocatalytical wave was generated in the presence of the VA and glucose. An apparent kox calculated by using the Nicholson–Shain function was 1.85×106 M−1 s−1 at pH 7.0 and 25 °C. Glucose and l-lactate bioelectrodes were prepared by adsorbing the GO and l-lactate oxidase (LO) onto the VA-modified graphite electrode. The electrode was poised at 0.6 V versus SCE and linear response was obtained over the range of 4–20 mM glucose and 2–12 mM l-lactate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号