首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The object of this work was to prepare high-density polyethylene (HDPE)/ethylene–propylene–diene terpolymer (EPDM)/conductive carbon black (CB) composites by dynamic curing and to characterize the positive-temperature-coefficient (PTC) performances of the composites.EPDM and dicumyl peroxide were preblended in a research mill. The roll-milled strands were blended with HDPE and CB in a Haake mixer. The sheet resistivity and morphology of the HDPE/EPDM/CB composites with or without the dynamic curing process were investigated. It was concluded that the dynamically cured blends exhibit better PTC performance than the simple blends without dynamic curing. The effects of shear intensity and dicumyl peroxide content during the dynamic curing process were discussed for the PTC characteristics of the HDPE/EPDM/CB composites.  相似文献   

2.
Polyaniline (PAni)-coated reduced multiwall carbon nanotubes (PRMWNTs) and carbon black (CB)-filled high-density polyethylene (HDPE) composites (PRMWNTs/CB/HDPE) were prepared through a melt mixing method. Oxidized MWNTs (OMWNTs) were prepared by treating pristine multiwall carbon nanotubes (MWNTs) with an acid mixture (HNO3:H2SO4), and PAni-coated OMWNTs (POMWNTs) were synthesized via in-situ polymerization of aniline monomer in the presence of OMWNTs. POMWNTs were further reduced using hydrazine monohydrate to obtain the PRMWNTs. Fourier transform infrared (FT-IR) spectra and thermogravimetric analysis (TGA) confirmed the formation of PRMWNTs. PRMWNTs showed significantly improved thermal stability and electrical conductivity comparing to POMWNTs. The positive temperature coefficient (PTC) behavior of PRMWNTs/CB/HDPE composites revealed enhanced PTC intensity and electrical conductivity at room temperature compared to POMWNTs/CB/HDPE composites. The PRMWNTs-10/CB/HDPE composite showed high peak resistivity (301.99 MΩ-cm) and low room temperature resistivity compared to the POMWNTs/CB/HDPE composite, and thus showed the highest PTC intensity value of 6.693 as well as very excellent cyclic stability.  相似文献   

3.
The effect of the work of adhesion between carbon blacks and different thermoplastic polymers on the positive temperature coefficient (PTC) of composites was investigated. Thermoplastic polymers, such as EVA, LDPE, LLDPE, HDPE, and PP, were used with the addition of 30 wt% of carbon blacks. The work of adhesion based on the surface free energy of a composite was studied in the context of two-liquid contact angle measurements using deionized water and diiodomethane. It was observed that the resistivity on PTC behavior was greatly increased near the crystalline melting temperature, due to the thermal expansion of polymeric matrix. It was shown that the PTC intensity defined as the ratio of the maximum resistivity (rho(max)) to the resistivity at room temperature (rho(RT)) had the largest value on CB/HDPE composites. From the experimental results, the decrease in the work of adhesion induced by interactions between carbon black surfaces and polymer chains is an important factor in the fabrication of a PTC composite.  相似文献   

4.
Polymeric positive temperature coefficient (PTC) materials have been prepared by incorporating carbon black (CB) into two different polymer matrices, crystalline high density polyethylene (HDPE) and amorphous polystyrene (PS). The effects of thermal volume expansion on the electrical properties of conductive polymer composites were studied. The volume fraction of conductive particles behaves like a switch from insulator to conductor in the polymeric PTC composite. Our mathematical model and experimental model have proved that the abrupt resistivity increase at PTC transition range and at the percolation curve close to the critical volume fraction for both polymeric PTC composites have the same conductive mechanism. The thermal expansion is one of the key factors responsible for the PTC effect and can be seen by comparing the PTC transition curves from model predictions and experiment. Furthermore, the model predicts PTC curves of CB/PS composite more successfully than it does for the CB/HDPE composite, and the reasons for this are also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3078–3083, 2007  相似文献   

5.
PE/CB复合材料的辐照效应   总被引:2,自引:0,他引:2  
研究了两种炭黑(CB)对PE的影响及PTC功能材料挤出后的特性,发现挤出后粒子和聚合物取向对材料电性能都有较大影响。经γ射线辐照后HDPE/CB功能复合材料稳定性大为提高,初步探讨了辐射对PTC功能材料稳定性的影响。结合辐射交联等方法提高材料的稳定性。用扫描电镜(SEM)观测了一系列PE/CB的形态、CB的分布、链段的分子运动,并结合Fisher的toy model对PE/CB机制做了较系统的解释。  相似文献   

6.
对电子束辐照交联并经溶剂抽提得到的炭黑/高密度聚乙烯(CB/HDPE)凝胶复合物的阻温特性进行了研究.结果表明,凝胶复合物与未抽提的交联试样和未交联试样相比,其PTC强度显著增大,并伴有明显的NTC现象.经热冷循环后,表现出很好的阻温特性稳定性,并且NTC现象消失.表明阻温特性的稳定性及NTC现象的消除强烈依赖于CB/HDPE导电复合材料凝聚态结构的稳定性  相似文献   

7.
iPP/HDPE/CB复合材料的制备及反常的温度-电阻效应   总被引:1,自引:0,他引:1  
本文利用普通熔融挤出法制备了iPP/HDPE/CB复合材料, 分别采用注射成型及压制成型方法得到测试试样. 通过研究复合材料体积电阻率随温度的变化, 考察注塑试样和压制试样的PTC特性及复合材料形态结构与试样PTC特性之间的关系.  相似文献   

8.
研究了炭黑填充硅橡胶硫化胶的热循环以及热处理过程中的导电行为,发现在热循环中阻温关系曲线逐渐向低电阻方向移动,而在恒温下发生电阻弛豫现象;分析了硫化胶的导电机制,讨论了阻温关系发生移动的原因.  相似文献   

9.
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect.  相似文献   

10.
The DC conductivity of polymer blends composed of poly(ethylene‐co‐vinyl acetate) (EVA) and high density polyethylene (HDPE), where a conductive carbon black (CB) had been preferentially blended into the HDPE, were investigated to establish the percolation characteristics. The blends exhibited reduced percolation thresholds and enhanced conductivities above that of the individually carbon filled HDPE and EVA. The percolation threshold of the EVA/HDPE/CB composites was between 3.6 and 4.2 wt % carbon black, where the volume resistivity changed by 8 orders of magnitude. This threshold is at a significantly lower carbon content than the individually filled HDPE or EVA. At a carbon black loading of 4.8 wt %, the EVA/HDPE/CB composite exhibits a volume resistivity which is approximately 14 and 11 orders of magnitude lower than the HDPE/CB and EVA/CB systems, respectively, at the same level of incorporated carbon black. The dielectric response of the ternary composites, at a temperature of 23°C and frequency of 1 kHz, exhibited an abrupt increase of ca. 252% at a carbon concentration of 4.8 wt %, suggesting that the percolation threshold is somewhat higher than the range predicted from DC conductivity measurements. Percolating composites with increasing levels of carbon black exhibit significantly greater relative permittivity and dielectric loss factors, with the composite containing 6 wt % of carbon black having a value of ϵ′ ≈ 79 and ϵ″ ≈ 14. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1899–1910, 1999  相似文献   

11.
研究了纤维状导电材料不锈钢纤维(SSF)填充高密度聚乙烯(HDPE)导电复合体系的导电渗流与流变渗流行为之间的关系,并与颗粒状导电颗粒炭黑(CB)/HDPE导电复合体系进行了比较.发现当SSF含量极低(0.3vol%)时,SSF/HDPE体系即发生导电渗流现象,且导电渗流转变区域极窄;而仅当SSF含量达到4.8vol%时,该复合体系才表现出流变渗流现象,这一结果与CB/HDPE体系及纳米级导电纤维填充体系截然不同.此外,通过正温度系数效应的研究发现SSF形成的导电通路稳定性高于CB/HDPE体系.我们认为,SSF/HDPE体系呈现的这些特点均与SSF较大的直径及长径比且其导电通路及流变渗流网络的形成机理不同有关.  相似文献   

12.
Argon plasma-pretreated high-density polyethylene (PHDPE) was blended with the conductive nano carbon black (CB) and inorganic flame retardant (magnesium hydroxide, Mg(OH)2) was added. Influences of the CB content, plasma treatment time, plasma treatment power, and dosage of 60Co γ-ray radiation on positive temperature coefficient (PTC) behaviors of composite were studied. In addition, the over-voltage resistance behavior of the composites was also investigated. The free radical of PHDPE was measured by 1,1-diphenyl-2-picryhydrazyl (DPPH) method. The gel contents of composite were measured by solvent extraction method. The results showed that the room-temperature volume resistivity and PTC effect of composite were improved significantly with plasma treatment. The PHDPE composite with 60Co γ-ray radiation eliminated the negative temperature coefficient (NTC) effect in the composites effectively, and the PTC intensity of composite was increased. With increasing of radiation dosage from 20 Mrads to 80 Mrads, the gel content of composites increased up to 83.84% and the response temperature of composites shifted to low temperature (127.5 °C to 114.8 °C). In this work, the composites also successfully passed the over-voltage resistance test, and possessed good reproducibility.  相似文献   

13.
The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) compositewere investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples,one with various CB contents in the composites and the other with various γ-irradiation doses in HDPE/CB compositecontaining 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value inHDPE/CB composite is about 16.7 wtO/ and the suitable γ-irradiation dose for improving the conductive behavior ofHDPE/CB composite is about 20 Mrad. T'he result observed for the second set of samples suggests that γ-irradiation causesnot only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitableirradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing thedecomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negativetemperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might providea more detailed explanation of the PTC effect and the NTC effect has been proposed.  相似文献   

14.
The effect of compounding procedure on morphology and crystallization behavior of isotactic polypropylene/high‐density polyethylene/carbon black (iPP/HDPE/CB) composite was investigated. iPP/HDPE/CB composites were prepared by four compounding procedures (A: iPP + HDPE + CB; B: iPP/HDPE + CB; C: HDPE/CB + iPP; D: iPP/CB + HDPE). Scanning electron microscopy observation showed that CB particles are mainly distributed in HDPE in all composites, and the phase morphology of composites was obviously affected by a compounding procedure. The size of the HDPE/CB domains in the composites prepared by procedures A and D decreased with the increase in CB content, whereas that of HDPE/CB in the composites prepared by procedures B and C rarely changed with the increase in CB content. The crystallization behaviors of the composites were significantly affected by their phase morphology, which resulted from the variation of compounding procedure. The isothermal crystallization rate of iPP in the composites prepared by procedures A and D was obviously increased, which may originate from the small HDPE/CB droplets dispersed in the iPP phase. The non‐isothermal crystallization curves of composites prepared by procedure D represented two peaks because the iPP component in these composites had the fastest crystallization rate, whereas the curves of composites prepared by other compounding sequences only exhibited one peak. Moreover, the crystallinity of HDPE almost increased by one time with the incorporation of only 1 phr CB because the CB particles selectively located in the HDPE phase, and the crystallinity of HDPE decreased with the further increase of CB content because of the strong restriction of CB on the HDPE chains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, gradient materials with low electrical resistivity were prepared by compounding isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends with carbon black (CB) through extruding and injection molding. Contact angle measurements and morphology measurements showed that the CB particles were selectively located in HDPE phase and the final composites had a gradient structure that the HDPE/CB phase exhibited different morphologies in the skin layer and core layer of the composites under different processing procedures. The main factors influencing the formation of the functional gradient materials (FGM), including screw speed during extruding, iPP types and CB contents were discussed. They affect the phase morphology by shear stress, the restoration of HDPE phase, and the viscosity ratio of polymer blends, respectively. In conclusion, iPP/HDPE/CB FGM could be formed easily in the composites blending with the iPP type with narrow molecular weight distribution (MWD) and higher CB content extruded at higher screw speed. The electrical properties of iPP/HDPE/CB composites were studied and the results showed that screw speed in extrusion significantly influenced the percolation curve and electrical property of the final composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
以碳纤维(CF)为填料,聚偏氟乙烯(PVDF)为基体,通过熔融共混法制备PVDF/CF导电复合材料.所得复合材料具有显著的正温度系数(PTC)效应,温度上升到聚合物熔点附近时,电阻率对温度变化敏感.在转折温度区间(155.5~171.0oC,(35)(28)15.5oC)内,其体积电阻率的增加速率约为1.3×105?cm K-1.在不同CF含量下,复合材料表现出不同的PTC行为.随着CF含量的增加,其峰值电阻略有下降.高导电粒子含量下,无负温度系数(NTC)效应.在冷却循环过程,导电网络的重构性良好.复合材料即使经过多次热循环,依然表现出良好的PTC特性重现性.  相似文献   

17.
Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC) effect is of great significance for large-scale application of polymer based PTC composites, owing to its contribution to the security and reliability. Herein, we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF) composite with outstanding PTC reproducibility, by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf_2]) into the composite. After multiple repeated temperature cycles, the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%. Our studies revealed that [OMIm][NTf2] contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii) it inhibits the crystallization of PVDF through the dilution effect, leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF. This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.  相似文献   

18.
本文试图在低频率(ω)及小应变条件下,追踪粒子填充导电复合材料微观结构的变化与发展,并通过修正的KerneNielson 方程对材料的聚集态结构进行研究.  相似文献   

19.
Microwave heating has several advantages over traditional methods of heating, including rapid and uniform heating, greater penetration depth of heat into material, lower power costs and selective heating within the material and so on. In this paper, effects of microwave heating on the properties of high‐density polyethylene/carbon black (HDPE/CB) composites were studied. The results show that the HDPE/CB composites can be heated via microwave irradiation, and composites with different CB concentration exhibit different microwave heatability. The 20 wt% CB composites have the most rapid heating rate, and its temperature reaches 78°C after 10 sec, and 159°C after 150 sec, respectively. Meanwhile, microwave heating improves the mechanical properties of HDPE/CB composites. Scanning Electron Microscopy (SEM) analysis shows a better combination between CB particles and HDPE after microwave irradiation. Furthermore, selective heating of microwave was used to prepare a novel oriented structure, which the core layer has preferential orientation and the surface layer has little orientation. Characterization of the novel oriented structure was also studied. Wide angle X‐ray diffraction (WAXD) analysis of 25 wt% CB composites with the novel oriented structure shows that the diffraction peaks of the surface layer are obviously weaker than those of the core layer, which indicates that orientation in the core layer is more intensive than that in the surface layer. The novel oriented structure is different to the traditional skin‐core structure, in which the surface layer has preferential orientation and the core layer has little orientation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
借助WAXD、SAXD和DSC等手段研究了炭黑与聚乙烯复合体系在不同热处理条件下的结晶行为及聚集态结构的大尺寸效应对PTC特性的影响。由此提出,不仅结晶度大小,而且聚集大尺寸效应性能对PTC行性有重要影响的新观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号