首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The interface between nanoparticles and the polymer matrix, which dominates the electrical properties of nanocomposites, can effectively improve the DC breakdown and suppress space charge accumulation in nanocomposites. To research the interface characteristics, XLPE/SiC nanocomposites with concentrations of 1 wt%, 3 wt% and 5 wt% were prepared. The DC breakdown, dielectric properties and space charge behavior were examined using pulsed electro-acoustic (PEA) equipment and a dielectric analyzer. The test results show that the nanocomposites with concentrations of 1 wt% and 3 wt% have higher DC breakdown field strength than neat XLPE. In contrast, there is a lower DC breakdown strength at a concentration of 5 wt%, possibly due to the agglomeration of nanoparticles. Nanoparticle doping increases the real and imaginary permittivities over those of neat XLPE. Furthermore, with increasing concentration, a larger increase in the permittivity amplitude was observed. Based on the space charge behavior, all nanocomposites could suppress space charge accumulation, but the nanocomposite with a concentration of 1 wt% exhibited the best effect. Meanwhile, heterocharge accumulation near electrodes was observed in neat XLPE and the nanocomposite with a concentration of 5 wt%. In contrast, homocharge accumulation near electrodes was observed in the nanocomposite with a concentration of 3 wt%. This phenomenon may be due to different amounts of shallow traps in nanocomposites with different concentrations, which might lead to differing electron or hole mobility.  相似文献   

2.
PP-g-PS copolymers were synthesized with the same polypropylene (PP) backbones and various side chain lengths of PS sequences via reactive comonomer p-allyltoluene (p-AT) by Ziegler–Natta copolymerization and the subsequent living anionic graft-polymerization. 1H NMR characterized that the PP-g-PS copolymer had grafted 3.15 side chains per 1000 carbons in the PP backbones and the length of PS sequences varied in the range of 25.8–309.9 units. PP/PS blends with the PP-g-PS copolymer as compatibilizer (wt. 75/25/5) were prepared and characterized by SEM, WAXD and DMA to investigate the morphologies, crystallinity and glass transition temperatures of the PP/PS blends. All the results pointed out that the average side chain length (GL) of the graft copolymer (GL is from 25.8 to 309.9) made great effects of the PP/PS blends, such as the PS dispersed phase, the crystallinity of the PP component and the two glass transition temperatures of the blends, which showed the same trend with the increase of the GL. Overall, only with a suitable average side chain length, the PP-g-PS copolymer could achieve optimal compatibilizing efficiency of the PP/PS blends.  相似文献   

3.
Studies on partial compatibility of PP and PS   总被引:1,自引:0,他引:1  
傅强 《高分子科学》2010,(4):647-656
<正>Blends of polystyrene(PS) and polypropylene(PP) were prepared through melt compounding.With an increase of PS content up to 30 wt%,the tensile strength of PP/PS blends increased from 37.4 MPa to 42.2 MPa,although the blends were widely regarded as immiscible.The DSC results showed that there's slight decrease in melting temperature of PP, showing insufficient evidence for partial compatibility between PP and PS.Almost no variation of distinct characterization peaks were observed in FTIR spectra of PS/PP blends compared with those of neat PP and PS,indicating there is no chemical interactions between PP and PS.Since the morphology investigation showed a droplet structure as PS content was up to 30 wt%,the improvement of tensile strength could be simply considered as due to the reinforcing effect of dispersed rigid PS particles on the PP,combining with partial compatibility between them as evaluated by change of C_p at glass transition for both PS and PP.More interestingly,DSC and DMA results showed that the blending of PS and PP could lead to a substantial decrease of the glass transition temperature(T_g) of PP,and increase of T_g of PS.The annealing experiment was carried out to understand the change of T_g in PP/PS blends.It is believed that the compressive stress generated by the contracting PP should be the dominant mechanism for the T_g elevation of PS.On the other hand,the T_g decrease of PP is likely owing to the creation of a large amount free interface of PP and the dilatation of the PP phase resulting from the corresponding tension exerted by PS during cooling.  相似文献   

4.
To study the efficiency of different mechanism for reactive compatibilization of polypropylene/polystyrene (PP/PS) blends main chain or terminal functionalized PP and terminal functionalized PS have been synthesized by different methods. While the in-situ block and graft copolymer formation results in finer phase morphologies compared to the corresponding non-reactive blends, the morphology development in the ternary blend system PP/PS + HBP (hyperbranched polymer) is a very complex process. HBP with carboxylic acid endgroups reacts preferably with the reactive sites of the oxazoline functionalized PS (PS-Ox) and locates mainly within the dispersed PS-Ox phase. A bimodal size distribution of the PS-Ox particles within the oxazoline modified PP (PP-Ox) matrix phase is observed with big PS-Ox particles (containing the HBP as dispersed phase) and small PS-Ox particles similar in size like the unimodal distributed particles in the non-reactive PP-Ox/PS-Ox blends. Factors influencing the morphology are discussed.  相似文献   

5.
A series of polypropylene (PP)/polystyrene (PS) blends were prepared by solvent blending with PS‐grafted PP copolymers (PP‐g‐PS) having different PS graft chain length as compatibilizers. The interfacial compatibility was significantly improved with increasing PS graft chain length until the interface was saturated at PS graft chain length being 3.29 × 103 g/mol. The blends were foamed by using pressure‐quenching process and supercritical CO2 as the blowing agent. The cell preferentially formed at compatibilized interface because of low energy barrier for nucleation. Combining with the increased interfacial area, the compatibilized interface lead to the foams with increased cell density compared to the uncompatibilized one. The increase in interfacial compatibility also decreased the escape of gas, held more gas for cell growth, and facilitated the increase in expansion ratio of PP/PS blend foams. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1641–1651, 2008  相似文献   

6.
To study the efficiency of different mechanisms for reactive compatibilization of polypropylene/polystyrene blends (PP/PS blends), main chain or terminal-functionalized PP and terminal-functionalized PS have been synthesized by different methods. While the in-situ block and graft copolymer formation results in finer phase morphologies compared to the corresponding non-reactive blends, the morphology development in the ternary blend system PP/PS + HBP (hyperbranched polymer) is a very complex process. HBP with carboxylic acid end groups reacts preferably with the reactive sites of the oxazoline functionalized PS (PS-Ox) and locates mainly within the dispersed PS-Ox phase. A bimodal size distribution of the PS-Ox particles within the oxazoline modified PP (PP-Ox) matrix phase is observed with big PS-Ox particles (containing the HBP as dispersed phase) and small PS-Ox particles similar in size to the unimodal distributed particles in the non-reactive PP-Ox/PS-Ox blends. Factors influencing the morphology are discussed.  相似文献   

7.
The polypropylene-graft-polyisoprene (PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum (1H-NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope (SEM), dynamic mechanical analysis (DMA), DSC, wide-angle X-ray diffraction (WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

8.
《先进技术聚合物》2018,29(6):1603-1612
In this study, polystyrene (PS) was melt blended with different amounts of poly1‐hexene (PH) and poly(1‐hexene‐co‐hexadiene) (COPOLY) and the blends were compared with conventional PS/polybutadiene (PS/PB) one. Scanning electron microscope revealed that the dispersion of PH and COPOLY in PS matrix was more uniform with the appearance of small particles in PS matrix; however, in the case of PS/PB blends, the fracture surface showed nonhomogenous morphology with the appearance of bigger rubber particles. Based on Differential Scanning Calorimetry (DSC) and dynamic mechanical thermal analysis results, Tg of the blends decreased in comparison with it in neat PS. Impact strength of PS/PH and PS/COPOLY blends was considerably higher than that in PS/PB and significantly higher than the value for neat PS. Tensile test showed substantial improvement in stress at yield and better elongation at break for COPOLY containing blend than the samples containing PH and PB rubbers. Also, blending of PS with 10% of the rubbers was considered in the presence of dicumylperoxide as a probable grafting/cross‐linking agent to produce XPS/COPOLY10 and XPS/PB10 samples, respectively. IR results of the nonsoluble solvent extracted gel showed that COPOLY and PB were grafted to PS matrix during melt blending, which caused higher impact strength in the related samples.  相似文献   

9.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

10.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
In this paper a polypropylene (PP) resin with controlled rheology was selected as polymer matrix and modified by melt mixing with polystyrene (PS) which has certain processing compatibility with PP. The effect of the addition of polyperoxide (PPX), peroxide modified PS particles (PS‐PPX), and maleic anhydride (MAH) to the PP/PS blend during melt mixing on the rheological behavior and morphology of the PP/PS blends has been carefully studied.  相似文献   

12.
电子显微镜观察表明,以乙丙橡胶(EPR)为主干,聚苯乙烯(PS)为支链的接枝共聚物EPR-g-PS的基本形态是高度分散的聚苯乙烯微区(约几百?)存在于乙丙橡胶连续相中的两相体系,随接枝共聚物中聚苯乙烯含量增加,微区形态发生变化,少量的接枝共聚物在PS与EPR共混物中起“增容剂”作用,使分散相微区变得小而均匀,多重玻璃化转变的存在进一步证实了接枝共聚物相分离的形态结构。  相似文献   

13.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

14.
The effects of styrene-ethylene/propylene (SEP) diblock copolymer on the morphology and mechanical propertiesof polypropylene/polystyrene (PP/PS) blends were investigated. The results showed that SEP diblock copolymer, acting as acompatibilizer in PP/PS immiscible blends, can diminish the coalescence of the dispersed particles, reduce their averageparticle size, change their phase morphologies significantly, and increase the mechanical properties. It was found that SEP has better compatibilization effects on the PP/PS (20/80) blends.  相似文献   

15.
SEP对PP/PS共混物的增容作用   总被引:3,自引:0,他引:3  
游长江 《广州化学》2001,26(3):7-14
研究了苯乙烯 -乙烯 /丙烯二嵌段共聚物 (SEP)对聚丙烯 /聚苯乙烯 (PP/PS)共混物的形态和力学性能的影响。结果表明 ,SEP在PP/PS共混物中作为增容剂 ,降低了分散相的聚结 ,减小了分散相的平均粒子尺寸 ,大大改变了共混物的形态 ,提高了共混物的力学性能 ,对PP/PS( 2 0 /80 )共混物的增容作用较为显著  相似文献   

16.
Blends of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys based on ethylene-propylene-diene elastomer (EPDM) grafted with maleic anhydride (MA) (EPDM-g-MA), EPDM grafted with glycidyl methacrylate (EPDM-g-GMA), and styrene-ethylene-butadiene-styrene block copolymer grafted with MA (SEBS-g-MA) were prepared via melt extruction, and morphology, mechanical properties, and rheology were studied. The compatibilizing effects of functionalized elastomers on the PPO/nylon 6 alloys were proved by DSC analysis and confirmed by the significant improvement in the notched Izod impact strength. Toughening was resulted from the smaller particle size and finer dispersion of EPDM in the PPO/nylon 6 matrix as well as a novel network structure of SEBS-g-MA domain in matrix. The notched Izod impact strength of the blends exhibited an optimum value when the extent of MA or GMA graft ratio of EPDM varied, which was an order of magnitude higher than the non-toughened alloys. The morphology revealed that the size of EPDM particles decreased with an increase in graft ratio of MA or GMA onto EPDM. Rheology investigation indicated that the MA or GMA moieties on EPDM reacted with the amine groups of nylon 6, which increased the molecular weight and the degree of branching, and thus resulted in an increase in the viscosity of the blends. This proved the reactive compatibilization between functionalized EPDM and PPO/nylon 6 matrix.  相似文献   

17.
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends ; (2) The β-type crystal structureof PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.  相似文献   

18.
In this study, a series of styrene‐b‐ethylene‐co‐butylene‐b‐styrene copolymer (SEBS)/polypropylene (PP)/oil blends with different kinds of oil composition was developed through melt blending. The effect of oil with different composition and properties on its phase equilibrium and “redistribution” in multiphasic SEBS elastomer was systematically studied for the first time. Moreover, an integral influencing mechanism of oil composition on the structure and properties of SEBS/PP/oil blends was also put forward. The mineral oil was mainly distributed in ethylene/butylene (EB)/PP phase, which greatly enhanced the processing flowability of SEBS/PP/oil blends. With increasing oil CN content, a redistribution of oil appeared and excess naphthenic oil (NO) entered the interphase of soft and hard phases. The dynamic mechanical thermal analysis (DMTA) analysis indicated that the polystyrene (PS) phase was plasticized, which also helped to improve the processing fluidity of blends. However, the plasticizing of physical cross‐linking point PS resulted in a decrease in mechanical strength and thermal stability. Small‐angle X‐ray scattering (SAXS) and transmission electron microscope (TEM) results showed that PS phase (45 nm to 55 nm) cylindrically distributed in EB/PP/oil matrix, the excess NO in the interphase enlarged the distance between PS phase and widen the escape channel for oil migration. At over 45% oil CN content, the electron density difference between soft and hard phases reduced to the minimum, same as TgPS, indicating a deeper plasticizing effect. The PS phase swelled and exhibited elastic behavior; thus, the force could be uniformly transferred between two phases. Importantly, a recover in strength and thermal stability was observed in O‐5 blend. This work significantly filled the gap of studies in oil‐extended thermoplastic elastomers (TPEs), exhibiting great theoretical guiding significance and application value.  相似文献   

19.
Graft copolymers have a potential as compatibilizers in two-component thermoplastic polymer blends, and also as impact-modifiers in one-component thermoplastics. The compatibility of the blocks of the copolymer (i.e. the grafts and the main chain) with the chains of the matrix polymers must be adjusted carefully. Blends of various polymers, especially of polystyrene (PS) and poly(vinyl chloride) (PVC), with graft copolymers on the basis of polybutadiene are discussed. An excellent compatibilizer, for blends PS/PVC, is a block-graft copolymer, derived from a diblock copolymer of Styrene and butadiene, with grafts of cyclohexyl methacrylate monomelic units.  相似文献   

20.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号