首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Blends of polyamide‐1010 (PA1010) and a thermoplastic poly(ester urethane) elastomer (TPU) were prepared by melt extrusion. The impact properties, phase structure, compatibility, and fracture morphology under impact were investigated for PA1010/TPU blends. The results indicated that TPU enhanced the impact strength of PA1010, and the best impact modification effect of the blends was obtained with 20 wt % TPU. The phase structure was investigated with scanning electron microscopy, and the compatibility was investigated with dynamic mechanical analysis and small‐angle X‐ray scattering. The study of the fracture morphology of PA1010/TPU blends indicated that the fracture surface of the blends had special features, consisting of many fibrillar elastomer particles and a conglutination–multilayer structure, as well as many small tubers on this structure. These fracture phenomena could not be found on the fracture surface of pure PA1010. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1177–1185, 2005  相似文献   

2.
研究了注塑温度对聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)共混物形态结构和力学性能的影响.实验结果表明,注塑温度影响POM基体相与TPU分散相的粘度比,195℃时两者粘度相当,在剪切流动过程中,TPU可在POM基体中形成条状分散相,可吸收较多的冲击能并阻止银纹的生长以及裂纹的产生,从而较大幅度提高共混物的缺口冲击强度.  相似文献   

3.
SMA、OMMT对PA6/ABS共混物聚集态结构及性能影响的研究   总被引:2,自引:0,他引:2  
采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等手段研究了苯乙烯-马来酸酐共聚物(SMA)、有机蒙脱土(OMMT)对尼龙6(PA6)/丙烯腈-丁二烯-苯乙烯(ABS)共混物体系聚集态结构及性能的影响.结果表明,SMA与OMMT的加入均可提高PA6/ABS共混物体系的强度及模量,但加入OMMT后共混物的韧性有所下降,而PA6/ABS/SMA共混物的韧性随SMA含量的增加呈上升趋势.SMA、OMMT对PA6/ABS共混体系都有细化ABS分散相的作用,随SMA加入量的增加,ABS分散相尺寸逐渐减小,分布趋于均匀;当OMMT加入量在4 phr以内时,对ABS分散相粒径影响不大,超过4 phr后,随着OMMT含量的增加,ABS分散相的尺寸逐渐减小.XRD与TEM的分析结果表明,对PA6/OMMT(100/5)共混物,OMMT主要以剥离形态分布,同时也存在少量OMMT聚集体;PA6/ABS/OMMT共混物中OMMT则基本以剥离形态选择分布在PA6基体相中.  相似文献   

4.
Blends of poly(methyl methacrylate) (PMMA) and thermoplastic polyurethane (TPU) in different compositions viz., 95/5, 90/10, 85/15 and 80/20 (by wt/wt, % of PMMA/TPU) were blended by melt mixing using a twin‐screw extruder. All the PMMA/TPU blends have been characterized for physico‐mechanical properties such as density, melt flow index, tensile behavior and izod impact strength. The impact strength of the PMMA/TPU blends were found to increase significantly with an increase in the percentage of TPU up to 20%, by retaining the tensile strength of PMMA. The effect of chemical aging on the performance of blends has been studied.  相似文献   

5.
Poly(methyl methacrylate) (PMMA) and thermoplastic polyurethane (TPU) blends in different compositions viz., 95/05, 90/10, 85/15 and 80/20 (by wt/wt% of PMMA/TPU) have been prepared by melt mixing using a twin screw extruder. The thermal stability of these blends has been characterized by thermogravimetric (TG) analysis. All the blends are stable up to 381°C and complete degradation occurs at 488°C. A slight improvement in thermal stability was noticed with an increase in TPU content in the blends. Surface morphology of the blends has been studied by an optical microscope. Optical microphotographs revealed two‐phase morphology for all the blends.  相似文献   

6.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

7.
Blends with varied ratio of polylactic acid (PLA) and thermoplastic polyurethane (TPU) were prepared by melt blending. The PLA content in blends was 20, 40, 60 and 80 wt%. Samples of pure PLA and TPU that underwent the same thermal treatment were also prepared. Biodegradation was examined by respirometry. Pure TPU started to degrade immediately due to degradation of the low molecular weight plasticizer in the polymer. Pure PLA, on the other hand, exhibited an incubation period after which degradation progressed rapidly and was almost complete after 70 days. The degradation profile of the blends can be correlated to their morphology. Samples with a co-continuous morphology initially degrade at a higher rate than the rest of the samples due to the higher exposure of the TPU phase in these blends.  相似文献   

8.
采用异山梨醇型聚碳酸酯(DB),与掺混型ABS熔融共混制备了具有不同聚丁二烯(PB)含量和丙烯腈(AN)含量的DB/掺混型ABS合金,并在考察掺混型ABS特征对合金结构与性能的影响的基础上,分别使用同种掺混型ABS以及各种商品化ABS树脂,比较了DB/ABS合金和双酚A型聚碳酸酯/ABS合金的性能及其变化规律.结果表明,对DB/掺混型ABS(70/30)合金而言,PB含量变化对于合金拉伸性能的影响明显大于AN含量变化所带来的影响,在PB含量为6.3 wt%条件下,各不同AN含量的合金体系均有最好的性能表现.PB含量和AN含量变化对合金分散相形态的影响与力学拉伸性能变化特征一致.DB/ABS合金体系均具有良好的热稳定性与热力学相容性,受AN含量和PB含量变化的影响较小,合金玻璃化转变温度与DB非常接近.以双酚A型聚碳酸酯为基础的聚碳酸酯(PC)/ABS合金及以异山梨醇型聚碳酸酯为基础的DB/ABS合金,在拉伸性能变化上均表现出完全相同的规律,且无论是采用掺混型ABS还是采用商品化ABS的体系,PC/ABS与DB/ABS合金在拉伸性能所反映出的规律也是基本一致的.  相似文献   

9.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

10.
通过多单体熔融接枝的方法制备出了具有较高接枝率的ABS接枝物 (ABS g (MAH co St) ) ,并对其接枝机理进行了初步探讨 .研究表明 ,MAH、St接枝ABS时 ,反应主要发生在ABS中聚丁二烯的双键部位 .同时 ,当MAH与St的用量比约为 1:1时接枝率达到最高 .ABS g (MAH co St)作为尼龙 6 (PA6 ) ABS共混体系相容剂起到了良好的增容效果 .实验证明 ,相容剂使用前后 ,共混物的相区尺寸由几十 μm减小到 1μm以下 ,且分布更加均匀 ;共混物的拉伸强度和冲击强度等力学性能也同时得到均衡改善 .  相似文献   

11.
Polypropylene (PP) and acrylonitrile‐butadiene‐styrene (ABS) blends with multiwall carbon nanotubes (MWNT) were prepared by melt mixing. PP/ABS blends without MWNT revealed coarse co continuous structures on varying the ABS content from 40 to 70 wt %. Bulk electrical conductivity of the blends showed lower percolation threshold (0.4–0.5 wt %) in the 45/55 co continuous blends whereas the percolation threshold was between 2 and 3 wt % in matrix‐particle dispersed morphology of 80/20 blends. Interestingly, droplet size was observed to decrease with addition of MWNT above percolation threshold in 80/20 blends. Further, the bulk electrical conductivity was found to be dependent on the melt flow index of PP. The non‐polar or weakly polar nature of blends constituents resulted in the temperature independent dielectric constant, dielectric loss, and DC electrical conductivity. Rheological analysis revealed the formation of 3D network‐like structure in 80/20 PP/ABS blends at 3 wt % MWNT. An attempt was made to understand the relationship between rheology, morphology, and electrical conductivity of these blends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2286–2295, 2008  相似文献   

12.
Blends of thermoplastic polyurethane (TPU) and ethylene-propylene-diene elastomer (EPDM) were prepared via a melt blending, and morphology, mechanical properties, and rheology were studied. Scanning electron microscopy (SEM) micrographs demonstrated that a network of EPDM domain was formed in TPU matrix, and became finer and more perfect with addition of 8 wt% EPDM into TPU. Dynamic mechanical analysis (DMA) and Fourier transformed infrared spectroscopy (FTIR) investigation indicated that EPDM was thermodynamically miscible with the soft segments of TPU and incompatible with the hard segments. The formation of the network was resulted from the competition of compatible and incompatible segments of TPU with EPDM. The tensile strength and elongation at break achieved a significant improvement with addition of EPDM, and obtained the optimum values of 39.21 MPa and 2659%, respectively, when EPDM content was 8 wt%. PEO-g-MA as a compatibilizer was employed to improve the compatibilization between EPDM and the hard segments of EPDM, and consequently, the network became finer and more perfect. The evaluation of rheological properties revealed that the introduction of EPDM into TPU resulted in a reduction of the viscosity at high shear rate and a decrease of the flow activation energy; thus the processability of the blends was improved.  相似文献   

13.
Blending poly(l ‐lactic‐acid) (PLLA) and thermoplastic polyurethane (TPU) has been performed in an effort to toughen PLLA without compromising its biodegradability and biocompatibility. The mixing enthalpy calculation of PLLA and TPU predicted that the blend was a thermodynamic miscible system. The viscoelastic properties and phase morphologies of PLLA/TPU blends were investigated further by dynamic mechanical analysis and scanning electron microscopy. It was found that the blend was a partially miscible system. The dynamic mechanical analysis showed that Tg of PLLA and TPU shifted toward with TPU content increasing. Scanning electron microscopy photos showed that the morphologies of the blends changed from a sea island structure to a bicontinuous structure as an increment in TPU content, which suggested that the miscibility of PLLA and TPU was enhanced when the TPU increased. PLLA/TPU blend fibers were fabricated. With the TPU content increasing from 0 wt% to 30 wt%, the tensile strength and initial modulus of blend fibers decreased first then increased, while elongation at break and fracture work gradually increased. The change of tensile properties indicated the toughening effects of TPU on PLLA fibers, also suggested that the formation of blend fibers was influenced by the blend rheological behavior other than the compatibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
SAN共聚物组成对PVC/ABS共混物相容性的影响   总被引:5,自引:0,他引:5  
采用乳液聚合技术通过改变共聚单体的投料比(St/AN)合成了一系列不同AN结合量的ABS接枝共聚物粉料和SAN共聚物.将其与聚氯乙烯(PVC)和邻苯二甲酸二辛酯(DOP)熔融共混分别制得了PVC/ABS、PVC/SAN、PVC/ABS/DOP和PVC/SAN/DOP共混物,利用SEM、TEM和动态力学粘弹谱仪(DMA)对共混物的相容性和相结构进行了表征.结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和SAN共聚物均为不相容体系;在该共混物中引入增塑剂DOP后,虽然当SAN共聚物AN结合量小于23.4 wt%时,共混物在室温以上只存在一个tanδ峰,但形态结构研究结果表明共混物仍为不相容体系,共混物的相区尺寸明显地依赖于SAN共聚物中的AN结合量,当AN结合量为23.4 wt%时相区尺寸最小.  相似文献   

15.
A series of PB-g-SAN impact modifiers with different ratio of PB to SAN ranging from 20.6/79.4 to 91.9/8.1 were synthesized by seeded emulsion polymerization. ABS blends were prepared by blending these PB-g-SAN impact modifiers and SAN resin. The rubber concentration of these ABS blends was kept at a constant value of 15 wt%. The influences of different impact modifier on the mechanical behavior and morphology of ABS blends have been investigated. The dynamic mechanical analysis on ABS blends shows that Tg of the rubbery phase shifts to a lower temperature, (tan δ)max of the rubbery phase increases and then decreases with the increase of PB concentration in PB-g-SAN impact modifier. A uniform dispersion of rubber particles in the matrix can be observed when PB/SAN ratio in PB-g-SAN impact modifier is in the range from 20.6/79.4 to 71.7/28.3. When it exceeds 71.7/28.3, an agglomeration of rubber particles occurs. The mechanical tests indicate that the ABS blend, in which PB/SAN ratio in the impact modifier is 71.7/28.3, has the maximum impact strength and yield strength.  相似文献   

16.
Poly(l-lactide) (PLLA) was melt-blended with acrylonitrile-butadiene-styrene copolymer (ABS) with the aim of enhancing impact strength and elongation at break of PLLA, but not sacrificing its modulus and stiffness significantly. However, PLLA and ABS were found to be thermodynamically immiscible by simply melt blending and the formed blends show deteriorated mechanical properties. The reactive styrene/acrylonitrile/glycidyl methacrylate copolymer (SAN-GMA) by incorporating with ethyltriphenyl phosphonium bromide (ETPB) as the catalyst was used as the in situ compatibilizer for PLLA/ABS blends to improve the compatibility between PLLA and ABS. The reactive process during melt blending was investigated by Fourier transformed infra-red (FTIR). It showed that the epoxide group of SAN-GMA reacted with PLLA end groups under the mixing conditions and that the addition of ETPB accelerated the reaction. Phase structure and physical properties of the compatibilized blends were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanical analysis (DMA), tensile tests and impact property measurements. It was found that the size of ABS domains in PLLA matrix is significantly decreased by addition of the reactive compatibilizer. The dynamic mechanical analysis revealed markedly shifted glass transition temperatures for both PLLA and ABS, indicating the improved compatibility between PLLA and ABS. The mechanical tests showed the compatibilized PLLA/ABS blends had a very nice stiffness-toughness balance, i.e., the improved impact strength and the elongation at break with a slightly loss in the modulus.  相似文献   

17.
Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene (PP) were developed using amine (primary or secondary) functionalized PP's (PP-g-NH2 or PP-g-NHR). The strategy of reactive compatibilization is based on fast reactions between amine functional groups and urethane linkages or traces of free isocyanates released by thermal degradation of TPU. Excellent compatibilization between TPU and PP was confirmed by rheological, morphological, and mechanical properties. Much finer domain size, higher interfacial adhesion, and more stable morphologies were clearly observed by scanning electron microscopy. Significant improvements in the overall mechanical properties (tensile, tear, abrasion) imply significantly more reaction between TPU and PP phases in the two TPU/PP blends containing PP-g-NH2 or PP-g-NHR than a TPU/PP blend using PP-g-MA as a compatibilizing agent.  相似文献   

18.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

19.
以PVC,TPU为主要原料,加入发泡剂AC,交联剂DCP,空心玻璃微珠及其他助剂经模压成型制备了PVC/TPU轻质材料.通过密度以及机械性能测试研究了TPU用量、DCP用量和空心玻璃微珠含量对PVC/TPU轻质材料性能的影响,用红外光谱研究材料基团的变化,通过凝胶含量测试交联体系凝胶量,用SEM扫描电镜表征了材料的泡孔形状、尺寸以及排列.聚酯型TPU能够提高轻质材料弯曲和冲击强度,TPU加入10份时,共混体系的表观密度最低,为0.30 g/cm3.表观密度随着交联剂DCP的添加先降低后增大,红外表征和凝胶含量测试证实轻质材料体系产生了交联结构.空心玻璃微珠的加入,使得PVC/TPU轻质材料的表观密度和综合机械性能提高明显,即使加入20份空心玻璃微珠密度始终小于1.0 g/cm3.SEM表明,DCP的加入使得泡孔更完整且不易破孔,泡孔壁更厚;空心玻璃微珠分布在泡孔壁上,起到引发泡孔和支撑负荷的作用.  相似文献   

20.
冯玉红  张若愚 《高分子科学》2014,32(8):1099-1110
Polylactide (PLA) was successfully toughened by blending with bio-based poly(ester)urethane (TPU) elastomers which contained bio-based polyester soft segments synthesized from biomass diols and diacids. The miscibility, mechanical properties, phase morphology and toughening mechanism of the blend were investigated. Both DSC and DMTA results manifested that the addition of TPU elastomer not only accelerated the crystallization rate, but also increased the final degree of crystallinity, which proved that TPU has limited miscibility with PLA and has functioned as a plasticizer. All the blend samples showed distinct phase separation phenomenon with sea-island structure under SEM observation and the rubber particle size in the PLA matrix increased with the increased contents of TPU. The mechanical property variation of PLA/TPU blends could be quantitatively explained by Wu's model. With the variation of TPU, a brittle-ductile transition has been observed for the TPU/PLA blends. When these blends were under tensile stress conditions, the TPU particles could be debonded from the PLA matrix and the blends showed a high ability to induce large area plastic deformation before break, which was important for the dissipation of the breaking energy. Such mechanism was demonstrated by tensile tests and scanning electron microcopy (SEM) observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号