首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.  相似文献   

2.
In this study, the dynamic responses of a planetary gear are analyzed when component gears have time-varying pressure angles and contact ratios caused by bearing deformations. For this purpose, this study proposes a new dynamic model of the planetary gear, in which the pressure angles and contact ratios change with time. The main difference from previous studies is that the present study regards the pressure angles and contact ratios as time-varying variables, while previous studies regarded them as constants. After nonlinear equations of motion for the planetary gear are derived, the dynamic responses are computed by applying the Newmark time integration method. The time responses for the present and previous studies are compared to show the effects of the time-varying pressure angles and contact ratios on the dynamic behaviors of a planetary gear. In addition, the effects of bearing stiffness on the pressure angles and contact ratios are also analyzed.  相似文献   

3.
In this study, a nonlinear time-varying dynamic model is proposed to predict modulation sidebands of planetary gear sets. This discrete dynamic model includes periodically time-varying gear mesh stiffnesses and the nonlinearities associated with tooth separations. The model uses forms of gear mesh interface excitations that are amplitude and frequency modulated due to a class of gear manufacturing errors to predict dynamic forces at all sun-planet and ring-planet gear meshes. The predicted gear mesh force spectra are shown to exhibit well-defined modulation sidebands at frequencies associated with the rotational speeds of gears relative to the planet carrier. This model is further combined with a previously developed model that accounts for amplitude modulations due to rotation of the carrier to predict acceleration spectra at a fixed position in the planetary transmission housing. Individual contributions of each gear error in the form of amplitude and frequency modulations are illustrated through an example analysis. Comparisons are made to measured spectra to demonstrate the capability of the model in predicting the sidebands of a planetary gear set with gear manufacturing errors and a rotating carrier.  相似文献   

4.
Time-varying mesh stiffness parametrically excites gear systems and causes severe vibrations and instabilities. Taking speed fluctuations into account, the time-varying mesh stiffness is frequency modulated, and more complex instabilities might arise. Considering two different speed fluctuation models, parametric instability associated with velocity-modulated time-varying stiffness is analytically investigated using a typical single-mesh gear system model. Closed-form approximations are obtained by perturbation analysis, and verified by numerical analysis. The effects of the amplitude of the mesh stiffness variation, the characteristics of speed fluctuations and damping on parametric instability are systematically examined.  相似文献   

5.
We demonstrate the importance of using the method of superposition for the precise calculation of frequencies and forms of axially symmetric elastic modes of test masses in gravitational antennas LIGO for detailed analysis of the effect of parametric oscillatory instability. The method allows one to construct analytical expressions for particular solutions to the medium equations of motion in cylindrical coordinates, which allow one to satisfy all zero boundary conditions. The obtained results allow considerably more reliable methods (as compared to meshing methods) to be used for predicting the number of combinations of optical and elastic modes that lead to the undesirable effect of the parametric oscillatory instability.  相似文献   

6.
An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) — employed in the integration of the underlying anelastic PDEs — that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.  相似文献   

7.
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L(∞) and L(2) errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems.  相似文献   

8.
Previous investigations have indicated that the finite number of balls can cause the bearing stiffness to vary periodically. However, effects of unbalanced force in a rotor–bearing system on the bearing stiffness have not received sufficient attention. The present work reveals that the unbalanced force can also make the bearing stiffness vary periodically. The parametric excitations from the time-varying bearing stiffness can cause instability and severe vibration under certain operating conditions. Therefore, the determination of the operating conditions of parametric instability is crucial to the design of high speed rotating machinery. In this paper, an extended Jones–Harris stiffness model is presented to ascertain the stiffness of the angular contact ball bearing considering five degrees of freedom. Stability analysis of a rigid rotor–bearing system is performed utilizing the discrete state transition matrix (DSTM) method. The effects of unbalanced force, bearing loads and damping on the instability regions are discussed thoroughly. Investigations mainly show that the time-varying bearing stiffness fluctuates sinusoidally due to finite number of balls and unbalanced force. The locations and widths of the instability regions caused by these two parametric excitations differ distinctly. Unbalanced force could change the widths of the instability regions, but without altering their central positions. The axial and radial loads of the bearing only change the positions of the instability regions, without affecting their widths. Besides, damping can reduce the widths of the instability regions.  相似文献   

9.
An anisotropic adaptation process is applied to a three-dimensional incompressible two-phase flow solver. The solver uses a level set/finite element method on unstructured tetrahedral meshes. We show how the level set function can be used to build an anisotropic mesh with good properties. Some computations with a strong transient character and large densities ratios (1/1000) are presented. We show that the efficiency of the computations can be deeply enhanced by mesh adaptations.  相似文献   

10.
We discuss the importance of accurate calculation of axially-symmetrical elastic modes frequencies and forms in test masses (mirrors) of Advanced LIGO interferometer using the method of superposition to analyse the effect of parametric oscillatory instability. This method consists in possibility to construct analytical expressions for partial solutions of media motion equation in the cylindrical coordinates which allow to satisfy all zero boundary conditions. Obtained results allow to predict more exactly (in comparison with numerical calculations) the number of combinations of optical and elastic modes that can create undesirable effect of parametric oscillatory instability.  相似文献   

11.
在ENO(Essentially Non-oscillatory)守恒插值方法的基础上,分析和研究现今流体力学计算中涉及的几类网格技术:重叠网格技术、自适应加密技术和运动网格技术.基于ENO插值多项式构造的重映方法具有良好的守恒性,可以有效保证数据传递中物理量的总体守恒.提出该类守恒插值方法在以上几种网格技术中的一些应用前景,并给出一些数值算例.  相似文献   

12.
The maximum principle is one of the most important properties of solutions of partial differential equations. Its numerical analog, the discrete maximum principle (DMP), is one of the most difficult properties to achieve in numerical methods, especially when the computational mesh is distorted to adapt and conform to the physical domain or the problem coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to numerical instabilities such as oscillations and to unphysical solutions such as heat flow from a cold material to a hot one. In this work, we investigate sufficient conditions to ensure the monotonicity of the mimetic finite difference (MFD) method on two- and three-dimensional meshes. These conditions result in a set of general inequalities for the elements of the mass matrix of every mesh element. Efficient solutions are devised for meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally refined elements as those used in the AMR methodology. On simplicial meshes, it turns out that the MFD method coincides with the mixed-hybrid finite element methods based on the low-order Raviart–Thomas vector space. Thus, in this case we recover the well-established conventional angle conditions of such approximations. Instead, in the other cases a suitable design of the MFD method allows us to formulate a monotone discretization for which the existence of a DMP can be theoretically proved. Moreover, on meshes of parallelograms we establish a connection with a similar monotonicity condition proposed for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm the effectiveness of the considered monotonicity conditions.  相似文献   

13.
A new method of reducing gear vibration was analyzed using a simple spur gear pair with phasing. This new method is based on reducing the variation in mesh stiffness by adding another pair of gears with half-pitch phasing. This reduces the variation in the mesh stiffness of the final (phasing) gear, because each gear compensates for the variation in the other's mesh stiffness. A single gear pair model with a time-varying rectangular-type mesh stiffness function and backlash was used, and the dynamic response over a wide range of speeds was obtained by numerical integration. Because of the reduced variation in mesh stiffness and the double frequency, the phasing gear greatly reduced the dynamic response and nonlinear behavior of the normal gears. The results of the analysis indicate the possibility of reducing vibration of spur gear pairs using the proposed method.  相似文献   

14.
通过简单的涂覆方法,结合宏观粗糙的表面和处理的低表面能材料制备超疏水钢薄片.海水的接触角高达130.16o,新的卡西-巴克斯特方程从理论上预测了这种新型材料的接触角,得到的预测 结果与实验吻合.表征了超疏水钢网小船的装载能力.最大载重约为17.50 g,这种微型钢网小船经过含量为2%的三甲氧基硅烷溶液处理.小船优异的负载能力可能归因于钢丝网表面的空气膜的作用.  相似文献   

15.
Ring gear is a key element for vibration transmission and noise radiation in the planetary gear system which has been widely employed in different areas, such as wind turbine transmissions. Its flexibility has a great influence on the mesh stiffness of internal gear pair and the dynamic response of the planetary gear system, especially for the thin ring cases. In this paper, the flexibility of the internal ring gear is considered based on the uniformly curved Timoshenko beam theory. The ring deformation is coupled into the mesh stiffness model, which enables the investigation on the effects of the ring flexibility on the mesh stiffness and the dynamic responses of the planetary gear. A method about how to synthesize the total mesh stiffness of the internal gear pairs in multi-tooth region together with the ring deformation and the tooth errors is proposed. Numerical results demonstrate that the ring thickness has a great impact on the shape and magnitude of the mesh stiffness of the internal gear pair. It is noted that the dynamic responses of the planetary gear set with equally spaced supports for the ring gear are modulated due to the cyclic variation of the mesh stiffness resulted from the presence of the supports, which adds more complexity in the frequency structure.  相似文献   

16.
The parametric instability of surface waves on the second harmonic of electron cyclotron frequency (SWCF) in a plasma filled dielectric wave guide is examined in a kinetic approximation. The studied surface waves are extraordinary polarized modes and propagate across the external steady magnetic field. The amplitude of the electrical pump wave is assumed to be small. Simple expressions for increments of the parametric instability of the SWCF are calculated. The otained results can be used in controlled fusion researches in order to avoid undesirable regimes of plasma periphery heating in that fusion devices which use the resonance electron cyclotron heating method.  相似文献   

17.
Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(?-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.  相似文献   

18.
In this paper, an improved two-level method is presented for effectively solving the incompressible Navier–Stokes equations. This proposed method solves a smaller system of nonlinear Navier–Stokes equations on the coarse mesh and needs to solve the Oseen-type linearized equations of motion only once on the fine mesh level. Within the proposed two-level framework, a prolongation operator, which is required to linearize the convective terms at the fine mesh level using the convergent Navier–Stokes solutions computed at the coarse mesh level, is rigorously derived to increase the prediction accuracy. This indispensable prolongation operator can properly communicate the flow velocities between the two mesh levels because it is locally analytic. Solution convergence can therefore be accelerated. For the sake of numerical accuracy, momentum equations are discretized by employing the general solution for the two-dimensional convection–diffusion–reaction model equation. The convective instability problem can be simultaneously eliminated thanks to the proper treatment of convective terms. The converged solution is, thus, very high in accuracy as well as in yielding a quadratic spatial rate of convergence. For the sake of programming simplicity and computational efficiency, pressure gradient terms are rigorously discretized within the explicit framework in the non-staggered grid system. The proposed analytical prolongation operator for the mapping of solutions from the coarse to fine meshes and the explicit pressure gradient discretization scheme, which accommodates the dispersion-relation-preserving property, have been both rigorously justified from the predicted Navier–Stokes solutions.  相似文献   

19.
This paper extends an algorithm of P1-conservative interpolation on triangular meshes to tetrahedral meshes and thus constructs an approach of solution reconstruction for three-dimensional problems. The conservation property is achieved by local mesh intersection and the mass of a tetrahedron of the current mesh is calculated by the integral on its intersection with the background mesh. For each current tetrahedron, the overlapped background tetrahedrons are detected efficiently. A mesh intersection algorithm is proposed to construct the intersection of a current tetrahedron with the overlapped background tetrahedron and mesh the intersection region by tetrahedrons. A localization algorithm is employed to search the host units in background mesh for each vertex of the current mesh. In order to enforce the maximum principle and avoid the loss of monotonicity, correction of nodal interpolated solution on tetrahedral meshes is given. The performance of the present solution reconstruction method is verified by numerical experiments on several analytic functions and the solution of the flow around a sphere.  相似文献   

20.
This work presents a moving mesh methodology based on the solution of a pseudo flow problem. The mesh motion is modeled as a pseudo Stokes problem solved by an explicit finite element projection method. The mesh quality requirements are satisfied by employing a null divergent velocity condition. This methodology is applied to triangular unstructured meshes and compared to well known approaches such as the ones based on diffusion and pseudo structural problems. One of the test cases is an airfoil with a fully meshed domain. A specific rotation velocity is imposed as the airfoil boundary condition. The other test is a set of two cylinders that move toward each other. A mesh quality criterion is employed to identify critically distorted elements and to evaluate the performance of each mesh motion approach. The results obtained for each test case show that the pseudo-flow methodology produces satisfactory meshes during the moving process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号