首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model which enables dynamic analysis of flexibly coupled misaligned shafts is presented. The model is setup to account for both angular and parallel misalignment in the presence of mass unbalance and incorporates a coupling having angular, torsional and axial flexibility. Among the important features is the ability to simulate both nonlinear bearing stiffness and coupling angular-stiffness anisotropy. The equations of motion are derived for the linear system, extended to include nonlinear bearing effects and subsequently transformed into non-dimensional form for general application. A series of numerical analyses are performed and the influence of important system parameters assessed thereby providing insight to the resulting static and dynamic forces and motions. Angular and parallel misalignments are shown to produce fundamentally different system response. It is found that the static preload induced by both types of misalignment can play a key role in producing complex vibration resulting from it's interaction with rotating-element anisotropy and bearing nonlinear properties. Bearing static forces are altered and rotating elements are subjected to alternating forces which could affect fatigue life. Bearing forces can be further modified by the application of transmitted torque. The potential for great variability in system response is shown to exist due to the participation of numerous influential variables.  相似文献   

2.
Vibration response of misaligned rotors   总被引:3,自引:0,他引:3  
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.  相似文献   

3.
The effect of misalignment on the stability of two rotors connected by a flexible mechanical coupling subjected to angular misalignment is examined. The study performed is to understand the effect of angular misalignment on the stability of rotating machinery. The dimensionless stability criteria of the non-linear system of differential equations of two misaligned rigid rotors are derived using Liapunov's direct method. A rigid disk is attached at the middle of each rotor, where the rotor-disk assembly is mounted on two hydrodynamic bearings with four stiffness and four damping coefficients. Sets of dimensionless conditions for sufficient whirl stability of the two misaligned rotors are derived. The stability conditions are presented in graphical form for deeper understanding of the effect of the flexible mechanical coupling stiffness and angular misalignment on rotating machinery stability. The results show that an increase in angular misalignment or mechanical coupling stiffness terms leads to an increase of the model stability region.  相似文献   

4.
MODAL ANALYSIS OF ROTATING COMPOSITE CANTILEVER PLATES   总被引:1,自引:0,他引:1  
A modelling method for the modal analysis of a rotating composite cantilever plate is presented in this paper. A set of linear ordinary differential equations of motion for the plate is derived by using the assumed mode method. Two in-plane stretch variables are employed and approximated to derive the equations of motion. The equations of motion include the coupling terms between the in-plane and the lateral motions as well as the motion-induced stiffness variation terms. Dimensionless parameters are identified and the explicit mass and the stiffness matrices for the modal analysis are obtained with the dimensionless parameters. The effects of the dimensionless angular velocity and the fiber orientation angles of rotating composite cantilever plates on their modal characteristics are investigated. Natural frequency loci veering and crossing along with associated mode shape variations are observed.  相似文献   

5.
Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-α time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of misalignment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements. It is also found that the misalignment results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.  相似文献   

6.
A modeling method for the modal analysis of a multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets on the modal characteristics of the rotating multi-packet blade system are investigated with numerical examples.  相似文献   

7.
The three-dimensional motion of an offshore compliant tower using both rigid and flexible beam models is studied in this paper. The tower is modelled as a beam supported by a torsional spring at the base with a point mass at the free end. The torsional spring constant is the same in all directions. When the beam is considered rigid, the two-degree-of-freedom model is employed. The two degrees constitute the two angular degrees of spherical co-ordinates, and the resulting equations are coupled and non-linear. When the beam is considered as elastic, three displacements are obtained as functions of the axial co-ordinate and time; again with coupled and non-linear equations of motion. The free and the forced responses due to deterministic loads are presented. The free responses of the rigid and elastic beams show rotating elliptical paths when viewed from above. The rate at which the path rotates depends on the initial conditions. When a harmonic transverse loading is applied in one direction, the displacement in that direction shows subharmonic resonance of order 1/2 and 1/3 while the displacement in the perpendicular direction is affected minimally. Next, in addition to the harmonic load in one direction, a transverse load is applied in the perpendicular direction. The transverse load varies exponentially with depth but is constant with time. It is found that the transverse load affects the transverse displacements in the perpendicular direction minimally.  相似文献   

8.
The flow, heat and mass transfer of water-based nanofluid are examined between two horizontal parallel plates in a rotating system. The effects of Brownian motion, thermophoresis, viscosity and Hall current parameters are considered. The governing partial differential equations are reduced to ordinary differential equations that are then solved numerically using the Runge–Kutta–Fehlberg method. Validation of numerical solution is achieved with an exact solution of primary velocity and found to be in good agreement. Results show that both surfaces experience opposite behavior regarding skin friction, Nusselt and Sherwood numbers in both primary and secondary flows. These physical quantities depend upon dimensionless parameters and numbers.  相似文献   

9.
In this paper, the classical von Kármán swirling flow problem due to a rotating disk is modeled and studied for the rate type Maxwell nanofluid together with heat and mass transfer mechanisms. The model under consideration predicts the relaxation time characteristics. The novel aspects of thermophoresis and Brownian motion features due to nanoparticles are investigated by employing an innovative Buongiorno’s model. The analysis further explores the impact of linear Rosseland radiation on heat transfer characteristics. The concept of boundary layer approximations is utilized to formulate the basic governing equations of Maxwell fluid. The dimensionless form of a system of ordinary differential equations is obtained through similarity approach adopted by von Kármán. The system of equations is integrated numerically in domain [0,∞) by using bvp midrich scheme in Maple software. The obtained results intimate that higher rotation raises the radial and angular velocity components. The nano-particles concentration enhances with Brownian motion parameter. Further, the heat transfer rate at the disk surface diminishes with thermophoresis parameter. The achieved numerical computations of velocity profiles, friction coefficient and Nusselt number are matched in limiting cases with previously published literature and an outstanding agreement is observed.  相似文献   

10.
Dispersion relation of single-walled carbon nanotubes (SWCNTs) is investigated. The governing equations of motion of SWCNTs are derived on the basis of the gradient shell model, which involves one strain gradient and one higher order inertia parameters in addition to two Lamé constants. The present shell model can predict wave dispersion in good agreement with those of molecular dynamic (MD) simulations available in the literature. The effects of two small scale parameters on the angular frequency and phase velocity in the longitudinal, torsional and radial directions are studied in detail. The numerical results show that the angular frequency and phase velocity increase with the increase of strain gradient parameter, whereas decrease with inertia gradient parameter increases. In addition, analytical expressions of the cut-off frequencies and asymptotic phase velocities are given. It is found that the number of cut-off frequencies is dependent on the circumferential wave number, and two asymptotic phase velocities exist for nonzero value of strain gradient parameter, while only one exists when the strain gradient parameter is excluded.  相似文献   

11.
黎芳  江月松  唐华  王海洋 《物理学报》2009,58(9):6202-6209
研究了拉盖尔-高斯光束轨道角动量信息传输系统在未对准时轨道角动量谱的变化.采用数学推导和数值仿真的方法,得到在任意传播距离处,接收系统轴与光轴分别出现横向偏移、角向倾斜,以及两者同时存在时光束的表达式,并分析和比较了几种情况下螺旋谱的变化特征.研究表明,两种偏移量的增加会增加螺旋谱的弥散,而弥散现象与两者偏移方向无关.在传输起点,横向偏移和角向倾斜均会引起螺旋谱的对称弥散.然而,随着传输距离的增加,横向偏移时螺旋谱的弥散程度逐渐减小,而角向倾斜时螺旋谱弥散程度逐渐增加.角向倾斜时螺旋谱始终保持对称分布,而横向偏移引起的弥散螺旋谱呈非对称分布,且经过一定距离后得到稳定的螺旋谱分布.当两者同时存在时,光束螺旋谱的弥散程度随着距离的增加逐渐增加到一个最大值,之后平缓地下降.并进一步得出了横向偏移与角向倾斜对弥散度的影响是不独立的. 关键词: 拉盖尔-高斯光束 螺旋谱 横向偏移 角向倾斜  相似文献   

12.
Modal characteristics of a rotating cantilever plate are investigated in the present work. A dynamic modelling method for rectangular plates undergoing prescribed overall motion is employed to derive the equations of motion. The general equations are particularized for the modal analysis of a rotating cantilever plate and dimensionless parameters are identified through dimensional analysis. The effects of the dimensionless parameters on the modal characteristics of the rotating plate are investigated. Incidentally, eigenvalue loci veering and crossing phenomena along with the corresponding modeshape variations are exhibited and discussed.  相似文献   

13.
和兴锁  李雪华  邓峰岩 《物理学报》2011,60(2):24502-024502
针对大范围运动规律为未知的刚-柔耦合系统研究其动力学特性.利用有限元方法对柔性梁进行离散,采用Lagrange方程建立平面柔性梁的刚-柔耦合动力学方程,研究在大范围运动为自由情况下,平面柔性梁的大范围运动和变形运动的相互耦合机理,比较零次模型、一次耦合模型及精确模型的差异,探讨各种模型的适用性. 关键词: 平面柔性梁 刚-柔耦合系统 动力学特性 分析与仿真  相似文献   

14.
A fundamental tenet of general relativity is geodesic motion of point particles. For extended objects, however, tidal forces make the trajectories deviate from geodesic form. In fact Mathisson, Papapetrou, and others have found that even in the limit of very small size there exists a residual curvature-spin force. Another important physical case is that of field theory. Here the ray (WKB) approximation may be used to obtain the equation of motion. In this article I consider an alternative procedure, the proper time translation operator formalism, to obtain the covariant Heisenberg equations for the quantum velocity, momentum, and angular momentum operators for the case of spinor fields. I review the flat spacetime results for Dirac particles in Yang-Mills fields, where we recover the Lorentz force. For curved spacetime I find that the geodesic equation is modified by an additional term involving the spin tensor, and the parallel transport equation for the momentum is modified by an additional term involving the curvature tensor. This curvature term is the Lorentz force of the gravitational field. The main result of this article is that these equations are exactly the (symmetrized) Mathisson-Papapetrou equations for the quantum operators. Extension of these results to the case of spin-one fields may be possible by use of the KDP formalism.  相似文献   

15.
The transient response of droplet deformation in a steady electric field is investigated by the numerical simulation and the motion of interface is captured by level-set method. The numerical scheme is validated and found to be in good agreement with classic analytical solutions. The effects of electric field intensity, interfacial tension, oil viscosity and droplet size on the transient deformation process are systematically discussed. The numerical results show that electric field intensity can accelerate the deformation of the droplet, while interfacial tension and oil viscosity damp it. Furthermore, the relation between electric capillary number and dimensionless deformation time is obtained.  相似文献   

16.
黎芳  江月松  欧军  唐华 《物理学报》2011,60(8):84201-084201
研究了涡旋光束与相位全息光栅不对准时衍射光束的解析特性.利用理论推导的方法得出涡旋光束经相位全息光栅接收后一阶衍射光束的解析表达式.然后通过仿真分析分别得出在发生正常对准、横向偏移、角向倾斜及横向偏移和角向倾斜两者同时出现时衍射光束的质心偏移特性和中心强度变化特性.研究表明: 拉盖尔-高斯光束经相位全息光栅衍射后得到的光场表达式为合流超几何函数形式.光束与相位全息光栅间的不对准会引起衍射光束质心的偏移,而且光束质心的偏移量随入射光束偏移距离和偏离角的增加而增加,与入射光束的偏移方向和方位角无关.角向倾斜时 关键词: 拉盖尔-高斯光束 相位全息光栅 横向偏移 角向倾斜  相似文献   

17.
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an “average” axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.  相似文献   

18.
In this paper it is shown that in general relativity the theory of motion of quadrupole test particles (QTP's) can be used to describe the energy and angular momentum absorption by detectors of gravitational waves. By specifying the form of the quadrupole moment tensor Taub's [7] equations of motion of QTP's are simplified. In these equations the terms describing the change of the mass and of the angular momentum of a QTP due to external gravitational waves are found to occur. The limiting case of the flat space-time is also briefly discussed.  相似文献   

19.
Fully coupled vibrations of actively controlled drillstrings   总被引:1,自引:0,他引:1  
A fully coupled model for axial, lateral, and torsional vibrations of actively controlled drillstrings is presented. The proposed model includes the mutual dependence of these vibrations, which arises due to bit/formation and drillstring/borehole wall interactions as well as other geometric and dynamic non-linearities. The active control strategy is based on optimal state feedback control designed to control the drillstring rotational motion. It is demonstrated by simulation results that bit motion causes torsional vibrations, which in turn excite axial and lateral vibrations resulting in bit bounce and impacts with the borehole wall. It is also shown that the results are in close qualitative agreement with field observations regarding stick-slip and axial vibrations and that the proposed control is effective in suppressing them. However, care must be taken in selecting a set of operating parameters to avoid transient instabilities in the axial and lateral motions.  相似文献   

20.
When in general geometric backgrounds the metric is accompanied by torsion, the metric conformal properties should correspondingly be followed by analogous torsional conformal properties; however a combined metric torsional conformal structure has never been found which provides a curvature that is both containing metric-torsional degree of freedom and conformally invariant: in this Letter we construct such a metric-torsional conformal curvature. We proceed by building the most general action, then deriving the most general system of field equations; we check their consistency by showing that both conservation laws and trace condition are verified. Final considerations and comments are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号