首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现重频脉冲功率源小型化,研制了基于快Marx发生器的紧凑型重频低阻抗脉冲功率源。采用大功率重频高压电源对Marx发生器充电,通过对充电电源和脉冲触发源的同步控制,实现对Marx发生器重频充电;Marx发生器中采用薄膜脉冲电容器、小型化气体开关、电感隔离以及SF6气体绝缘等设计,以8级紧凑Marx发生器进行验证性研究,在16 Ω阻抗负载上实现了重复频率10 Hz、脉宽150 ns、峰值电压大于400 kV连续多脉冲输出;在此基础上,设计了18级紧凑型Marx发生器,在约18 Ω阻抗负载上输出功率达到33 GW,峰值功率密度大于150 GW/m3,实现重复频率5 Hz、脉宽约160 ns、峰值电压大于600 kV的连续多脉冲输出。为了降低Marx发生器的输出阻抗,采用4台电容器并联作为Marx发生器的一级储能模块,研制了同轴紧凑Marx脉冲功率源,有效减小放电回路电感,实现12 Ω低阻抗负载近似匹配输出,前沿减小至50 ns以下,脉宽约130 ns。  相似文献   

2.
基于快Marx发生器技术路线,研制了一套具有高功率密度的低阻抗紧凑型重频脉冲驱动源。采用18级Marx发生器电路结构,每级由1只60 nF/100 kV脉冲电容器、1个气体开关及隔离电感构成,每两级构成一个模块,整体采用SF6气体绝缘,储能密度达到25.7 kJ/m3;采取开放式气体开关,其中两级为触发开关,其余为过电压自击穿开关;触发源采用小型化Marx电路及绝缘胶真空灌封设计。实验中脉冲驱动源单次工作时在约18 阻抗负载上输出电压达到765 kV、脉宽约160 ns、前沿约50 ns,功率密度达到157 GW/m3;受充电电源功率限制,重复频率5 Hz充电70 kV,连续5脉冲输出功率约17 GW,脉冲波形重复性较好。  相似文献   

3.
陡化前沿Marx发生器的阻抗特性   总被引:2,自引:2,他引:0  
 利用50 kV无感电容器与固体电阻制作了10级陡化前沿Marx发生器,实现了电容储能型脉冲功率调制系统的小型化。使用不同阻值的水电阻负载研究了发生器的阻抗特性,并进一步制作了金属膜电阻负载进行实验,测定90 Ω负载可以使发生器处于临界阻尼放电状态,从而确定发生器的内部阻抗约为45 Ω。当充电电压为40 kV时,在金属膜电阻负载上得到了幅值约为210 kV,脉宽约为40 ns,前沿约为5 ns的快前沿高压脉冲。利用此发生器成功地驱动了强流二极管,当二极管阴阳极间距为15 mm时,在30 kV充电情况下,其输出电压约为154 kV,束流约为1 kA。  相似文献   

4.
快前沿紧凑型X光机研制   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了一种基于Marx发生器原理设计的快前沿紧凑型X光机,采用Marx发生器直接驱动X射线管的线路设计,封装在一个直径约为15 cm、长约1.2 m的不锈钢圆筒内。Marx发生器设计为15级单极性同轴结构,利用锐化开关与屏蔽外筒间的杂散电容来减小脉冲前沿,同时采用紧凑低电感设计来获得窄脉冲的输出。Marx发生器最大储能90 J,在充电电压为30 kV的情况下,75Ω负载上获得了前沿10 ns、脉宽40 ns、幅度360 kV的高压脉冲。实验结果表明X光机设计合理,实现了设备小型化目标,获得了快前沿高幅度的高压脉冲。研制的X光机的主要的参数为:脉宽35 ns;0.3 m处剂量约2.58×10~(-5)C/kg;焦斑2 mm。  相似文献   

5.
150kV脉冲X光机   总被引:8,自引:8,他引:0       下载免费PDF全文
介绍了基于Marx发生器原理设计的脉冲X光机,在设计Marx发生器时选择了正负极充电,极间电容耦合为Z形回路的Marx发生器线路,采用低抖动场畸变开关和固体低感电阻为结构元件,低感陶瓷电容作为储能元件。Marx发生器通过高压电缆和X射线管连接,得到脉冲X光机特性为:输出电压100~150kV;0.25 m处的X射线剂量约为90.3×10-7C/kg;脉冲宽度约为70 ns。具有性能稳定、结构紧凑、使用方便等特点。  相似文献   

6.
 设计加工了一个紧凑型L波段磁绝缘线振荡器(MILO)并进行了实验研究。该MILO具有一个新型收集极和一个新型模式转换器,射频扼流腔减为一个,同时将阴极杆设计成变阻抗结构,该MILO由一台自建的600kV,8Ω,100ns加速器SPARK01驱动。在二极管电压为515~538kV, 二极管电流为58~61kA的条件下, 该MILO在实验中获得了1.76~1.78GHz, 2.2~2.5GW的TM01模高功率微波辐射, 功转换效率为7.3%~7.9%。在30ns的有效电压脉宽下,实验中测得微波脉冲半高宽为15ns。实验结果与模拟结果符合得较好。  相似文献   

7.
设计了一台基于磁开关和带状线的超低阻抗长脉冲脉冲发生器。设计输出脉冲电压20kV,电流40kA,脉宽230ns,由初级储能系统、脉冲变压器、磁开关、带状脉冲形成线、轨道开关和负载组成。脉冲发生器的关键设备是40kV级磁开关,它能将40kV,10μs的脉冲压缩为40kV,2μs的脉冲;超低阻抗卷绕型带状脉冲形成线,其特性阻抗0.5Ω,电长度115ns,由铜带和聚酯薄膜卷绕而成,为全固态化脉冲形成线。在大功率匹配负载上得到了电压17.8kV,电流35.6kA,脉宽约270ns的准方波脉冲。实验结果与理论计算及数值模拟结果基本一致。  相似文献   

8.
新型电感储能脉冲功率驱动源   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了将传统单个储能电感利用传输线分隔成两部分的新型电感储能脉冲功率驱动源技术方案。理论分析表明,利用传输线电容的耦合延时作用,可有效对调制器输出脉冲波形进行整形,并且可以进一步提高能量转换效率,从而克服传统电感储能脉冲功率源输出波形质量差(类三角波波形)的缺点。基于该思想开展了实验研究,获得了电压约300 kV,电流约20 kA的电子束,并成功驱动S波段磁绝缘线振荡器获得了百MW量级的微波输出。  相似文献   

9.
模块化低阻抗紧凑型Marx发生器   总被引:1,自引:1,他引:0       下载免费PDF全文
设计的10级低阻抗紧凑型Marx发生器整体体积约0.12 m3,输出功率为30 GW,脉宽200 ns。该发生器采用正负充电,触发开关为三电极场畸变开关,其余开关采用过压自击穿开关;经优化设计,自击穿开关高33 mm、电感13.1 nH,触发开关高42 mm、电感15.2 nH。电容正负电极片与开关电极采用挤压连接,电极片间绝缘材料为聚丙烯薄膜,薄膜共100层,总厚度2 mm,耐受电压大于100 kV;Maxwell模拟表明:此种连接方式可将每个电极连接片电感降低到4.16 nH。Pspice电路模拟和实验均表明:电容器充电100 kV条件下,12 负载上可获得电压高于600 kV、峰值电流大于50 kA的输出。  相似文献   

10.
介绍了西北核技术研究院研制的4 MV脉冲X射线闪光照相装置("剑光二号")系统组成和实验结果。装置基于感应电压叠加器(IVA)驱动阳极杆箍缩二极管(RPD)技术,主要由前级脉冲功率源、感应电压叠加器和RPD等组成。前级脉冲功率源由两台3.2 MV低电感Marx发生器和四路同轴水介质线组成。每台Marx同时给两路脉冲形成线(特征阻抗6Ω、电气长度30 ns)充电,充电峰值时间约370 ns。每路水介质线采用两级脉冲压缩,为感应腔馈入约1 MV/160 kA/60 ns电脉冲。电触发SF6气体开关、自击穿水开关分别用作主同步开关和脉冲陡化开关。感应电压叠加器采用四级1.5 MV感应腔串联,每级感应腔采用单点馈入结构。次级采用真空绝缘传输线实现电压叠加和功率传输,特征阻抗由30Ω线性增大至120Ω。采用4 MV电压下综合性能较优的RPD来产生强脉冲X射线。装置目前达到技术指标:输出电压4.3 MV、脉冲前沿(10%~90%)21 ns、半高宽约70 ns、二极管电流85 kA,X射线半高宽约55 ns,整机延时(从Marx触发器输出到X射线产生)约749 ns,标准偏差约7 ns。当RPD阳极采用直径2 mm钨针时,正前方1 m处剂量约15.5 rad(LiF),正向焦斑约1.4 mm。  相似文献   

11.
 采用快前沿Marx发生器直接驱动辐射天线,设计了一种紧凑型宽谱辐射源。Marx发生器采用3 300 pF低电感陶瓷电容器作为储能电容,采用螺旋形空芯电感作为充电电感,通过各级气体火花开关迅速放电,在负载上建立了陡化前沿的输出电压波形。系统设计为同轴一体化结构,整个Marx发生器放置在一个密封的金属圆筒内,通过充氮气或者六氟化硫气体来绝缘。辐射系统包括振荡器及辐射天线两部分,系统辐射场中心频率为206 MHz,辐射因子40 kV,可重复频率10 Hz运行。  相似文献   

12.
200 kV闪光照相测试系统   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了一种基于Marx发生器原理设计的200 kV闪光照相测试系统,该系统具有延时功能,可按照实验要求,在预定时刻产生脉冲X射线进行闪光照相测试。设计了一台10级同轴结构的Marx发生器,采用了正负极充电,极间电容耦合为Z形回路的Marx发生器线路,利用开关与屏蔽外筒间的结构电容来锐化高压脉冲的输出,同时采用紧凑性、低电感设计获得窄脉冲的输出。在充电电压为25 kV的情况下,75 的负载上获得了脉宽小于100 ns、幅度大于200 kV的高压脉冲,通过高压电缆驱动闪光X射线二极管, 在距光源25 cm处获得了剂量大于910-6 C/kg、脉冲宽度约为70 ns的闪光X射线。  相似文献   

13.
研制了一台紧凑重频脉冲形成网络(PFN)-Marx脉冲发生器,由PFN-Marx发生器、脉冲充电单元、重频触发单元等组成。PFN-Marx发生器模块采用全电感隔离,直径为480 mm,长度为700 mm。脉冲充电单元采用中储电容加脉冲变压器方法,单次充电可以满足10次输出。重频触发单元采用变压器和磁开关一体化设计的全固态Marx发生器技术,输出电压大于50 kV,前沿小于100 ns。脉冲发生器早期输出电参数为单次10 GW,脉冲宽度100 ns,前沿10 ns,阻抗40 。重频工作时输出功率7 GW,频率5 Hz。后期调整后电参数更改为单次10 GW,脉冲宽度70 ns,前沿10 ns,阻抗50 。重复频率工作时稳定输出功率8 GW,频率10 Hz,单串10个脉冲。初步的应用研究中,利用改进后的平台,在5 GW条件下驱动磁控管获得了S波段约1 GW的微波输出。  相似文献   

14.
介绍了一种基于电触发技术的重复频率脉冲驱动源,其突破了双电容结构脉冲成形、紧凑型结构高压产生、大电流条件下重复频率稳定运行等关键技术,采用电路结构最简单的Marx电压叠加技术,解决了Marx在重复频率运行中的技术难点。脉冲功率驱动源设计输出功率20 GW、脉冲宽度180 ns、重复频率1~50 Hz,输出功率和重复频率在一定范围内可调。研制的脉冲功率驱动源体积仅2.5 m3,重量低至2.2 t,脉冲形成单元储能密度高达23 kJm-3,驱动源单次工作状态下输出功率约20 GW;在重复频率30 Hz工作状态下,输出功率16 GW、连续运行时间10 s、系统抖动约6 ns,系统运行稳定可靠。  相似文献   

15.
高功率宽谱开关振荡器   总被引:2,自引:2,他引:0       下载免费PDF全文
采用1/4波长开关同轴谐振器技术路线,开展了高功率宽谱微波产生及耦合输出技术研究。设计振荡器工作在200 MHz,低阻抗1/4波长同轴传输线与传输线一端的环形多通道气体火花开关构成谐振器,耦合器由集中电容和分布电感构成,实现宽谱微波的能量提取。通过数值模拟研究了振荡器的振荡及耦合输出过程,分析了高压脉冲馈入方式、谐振器阻抗特性及开关齿槽结构对环形开关导通特性的影响。数值模拟和实验结果证明,采用直馈方式、高阻结构和齿槽结构有利于形成开关多通道导通,并提高开关导通的稳定性。在输出电压为500 kV的Marx脉冲功率源平台上构建了高功率宽谱微波产生实验装置,实验得到的宽谱微波振荡频率为195 MHz,辐射因子约150 kV,频谱带宽约30%。  相似文献   

16.
对L波段双阶梯阴极磁绝缘线振荡器(MILO)进行了粒子模拟,在输入电压710 kV,电流56.6kA条件下,得到微波输出功率为4.8 GW,微波频率1.22 GHz。根据模拟结果设计MILO实验装置并开展实验研究,介绍了测试方法与测试系统,并对辐射微波功率、频率和模式进行了测量。在二极管电压740 kV,电流61 kA条件下,测得辐射微波功率为3.57 GW,微波脉宽46 ns,微波频率1.23 GHz,功率转换效率8%,辐射微波模式为TM01模。  相似文献   

17.
研制了一种主要用于脉冲功率系统前级触发用的Marx发生器,介绍了其工作原理和主要参数。该Marx发生器采用单边充电技术路线和同轴紧凑型结构,高压脉冲采用柔性高压同轴电缆输出,在75Ω匹配负载上获得了超过170kV的高压脉冲输出,脉冲宽度超过200ns,在140~160kV工作区间内其前沿小于3ns,抖动不超过1.5ns。该Marx发生器工作范围宽,稳定可靠,很好地满足了高功率脉冲触发系统的要求。  相似文献   

18.
基于已经研制完成的100 kV/100 kA快脉冲直线型变压器驱动源(LTD)原型模块,设计研制了输出电压/电流分别为1 MV/100 kA(功率为100 GW)的快脉冲LTD装置。装置由10级100 kV/100 kA快脉冲LTD模块串联而成,总储能为20 kJ,装置直径约1.5 m,长度约2.2 m。最终在85 kV充电电压下,二极管负载上获得的电流约为116 kA,电压约为1.1 MV,电压上升时间53 ns,电压脉宽146 ns,二极管阻抗约为9.4 。  相似文献   

19.
陡化前沿Marx发生器的设计与初步实验   总被引:4,自引:3,他引:1       下载免费PDF全文
 设计了10级同轴结构的陡化前沿Marx发生器,实现了电容储能型脉冲功率调制系统的小型化。该系统采用3 nF低电感电容器作为储能电容,采用固体电阻作为充电电阻,通过各级短间隙气体火花开关迅速放电及级间紫外光耦合在50 Ω负载上建立了陡化前沿的输出电压波形。在考虑开关电极分散电容、等效传输线效应及回路电感等因素基础上,利用自击穿火花开关模型建立了等效放电电路模型,并利用PSpice电路模拟软件进行了数值模拟。根据数值模拟结果设计加工了10级陡化前沿的Marx发生器实验装置,在较低充电电压下(7 kV与11 kV),得到了初步实验结果,输出电压波形大致为方波,相对于传统Marx发生器输出前沿缓慢的三角波有较大改善,半高宽为40~50 ns,前沿时间为十几ns,幅值约为41 kV和57.5 kV,实验结果与模拟结果基本一致。  相似文献   

20.
饶俊峰  洪凌锋  郭龙跃  李孜  姜松 《强激光与粒子束》2020,32(5):055001-1-055001-6
脉冲功率技术在工业和生物医学领域有着广泛的应用,很多应用场合要求输出数百安培的高压脉冲。固态Marx发生器虽已研究多年,但是被广泛采用直插封装的IGBT和MOSFET功率半导体开关管的额定电流通常都低于100 A,无法满足低阻抗负载的应用需求。为提高输出脉冲电流幅值,提出两种多路Marx发生器并联的脉冲电源的拓扑结构,第一种方案采用多路Marx发生器直接并联,第二种是共用一组充电开关管的多路Marx发生器并联。由FPGA提供充放电控制信号,采用串芯磁环隔离驱动方案实现带负压偏置的同步驱动,主电路选用开通速度快、通流能力强的IGBT为主开关的半桥式固态方波Marx电路。实验结果表明,6路16级Marx直接并联的脉冲发生器能输出重频100 Hz高压方波脉冲幅值可达10 kV,在30Ω负载侧输出峰值电流可达300 A,上升时间230 ns。共用充电开关管的6路4级Marx并联发生器在5Ω电阻负载上的输出电流峰值可达300 A,最大输出电流可达460 A,上升时间272 ns。表明多路Marx发生器并联可以有效地减小系统内阻,提高系统带载能力;改进后的并联方案实现大电流脉冲输出的同时,所采用的开关管数量减小近一半,提高了系统的抗干扰能力的同时,降低了脉冲电源的成本;且增加级间并联导线可进一步改善均流效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号