首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全无机钙钛矿太阳电池因其热稳定性好、载流子迁移率高,可用于制备叠层电池等优点备受关注。随着人们对全无机钙钛矿太阳电池的深入研究和制备工艺的持续优化,全无机钙钛矿太阳电池的光电转换效率已经突破19%。然而,全无机钙钛矿材料相稳定性较差,这使得实现全无机钙钛矿太阳电池在空气环境下制备和长期使用面临巨大挑战。众多科研工作者通过分析全无机钙钛矿材料的相变机制,有针对性地提出了包括添加剂工程、界面工程和开发全无机钙钛矿量子点电池等多种方式来改善全无机钙钛矿太阳电池的长期稳定性。本综述从全无机钙钛矿材料与电池的结构、活性层制备方法和稳定性研究三个方面总结了近年来关于全无机钙钛矿太阳电池的研究进展。  相似文献   

2.
A decade of significant research has led to the emergence of photovoltaic solar cells based on perovskites that have achieved an exceptionally high-power conversion efficiency of 26.08%. A key breakthrough in perovskite solar cells (PSCs) occurred when solid hole-transporting materials (HTMs) replaced liquid electrolytes in dye-sensitized solar cells (DSSCs), because HTMs play a crucial role in improving photovoltaic performance as well as cell stability. This review is mainly focused on the HTMs that are responsible for hole transport and extraction in PSCs, which is one of the crucial components for efficient devices. Here, we have reviewed small molecular as well as polymeric HTMs that have been reported in the last two years and discussed their performance based on the analysis of their molecular architectures. Finally, we include a perspective on the molecular engineering of new functional HTMs for highly efficient stable PSCs.  相似文献   

3.
目前,有机-无机杂化钙钛矿太阳能电池(PSC)的器件效率已经超过25%.电子传输层作为PSC中的重要组成部分在提取和传输光生电子,阻挡空穴,修饰界面,调节界面能级和减少电荷复合等方面起着关键作用.无机n型材料,例如TiO2、ZnO、SnO2和其他金属氧化物材料具有成本低和稳定性好的特点,经常在传统PSC中被用作电子传输...  相似文献   

4.
Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3–5 times, leading to diffusion lengths exceeding 7 μm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.  相似文献   

5.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   

6.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have become a shining star in the photovoltaic field due to their spectacular increase in power conversion efficiency (PCE) from 3.8 % to over 23 % in just few years, opening up the potential in addressing the important future energy and environment issues. The excellent photovoltaic performance can be attributed to the unique properties of the organometal halide perovskite materials, including high absorption coefficient, tunable bandgap, high defect tolerance, and excellent charge transport characteristics. The authors entered this field when pursuing research on dye‐sensitized solar cells (DSCs) by leveraging nanorods arrays for vectorial transport of the extracted electrons. Soon after, we and others realized that while the organometal halide perovskite materials have excellent intrinsic properties for solar cells, interface engineering is at least equally important in the development of high‐performance PSCs, which includes surface defect passivation, band alignment, and heterojunction formation. Herein, we will address this topic by presenting the historical development and recent progress on the interface engineering of PSCs primarily of our own group. This review is mainly focused on the material and interface design of the conventional n‐i‐p, inverted p‐i‐n and carbon electrode‐based structure devices from our own experience and perspective. Finally, the challenges and prospects of this area for future development will also be discussed.  相似文献   

7.
It is highly desirable to develop novel n‐type organic small molecules as an efficient electron‐transport layer (ETL) for the replacement of PCBM to obtain high‐performance metal‐oxide‐free, solution‐processed inverted perovskite solar cells (PSCs) because this type of solar cells with a low‐temperature and solution‐based process would make their fabrication more feasible and practical. In this research, the new azaacene QCAPZ has been synthesized and employed as non‐fullerene ETL material for inverted PSCs through a solution‐based process without the need for additional dopants or additives. The as‐fabricated inverted PSCs show a power conversion efficiency up to 10.26 %. Our results clearly suggest that larger azaacenes could be promising electron‐transport materials to achieve high‐performance solution‐processed inverted PSCs.  相似文献   

8.
钙钛矿太阳能电池(PSCs)成为近几年来迅速发展的新型太阳能电池,其中将SnO2纳米粒子层用作电子传输层(ETL)的钙钛矿太阳能电池器件得到了广泛的关注。SnO2有着更低的制备温度,使其具备应用于柔性器件的潜力,但与钙钛矿层能级不匹配等问题限制着其发展。而在界面处加入钝化层,尤其是表面卤化的方法或可解决这一问题。本文综合研究了SnO2表面卤化对钙钛矿太阳能电池光伏性能的影响,选用四丁基氯化铵(TBAC)、四丁基溴化铵(TBAB)和四丁基碘化铵(TBAI)三种钝化材料对SnO2表面进行钝化处理,并对钝化材料溶液进行了浓度梯度研究。通过材料形貌、结构和光学性能表征以及电池器件性能测试分析等方法,证明了SnO2表面卤化可提高钙钛矿层的质量和PSCs光伏性能,并从器件内部电荷传输动力学等角度解释了器件性能改善的原因。为进一步说明其性能改善的机理,采用基于密度泛函理论(DFT)的第一性原理计算方法对材料表面性质进行了深入研究,从能量、结构、电荷密度、态密度、功函数等角度解释了表面卤化提高SnO2/钙钛矿界面处电子传输特性的原因。实验和理论计算均表明TBAC对于SnO2具有较好的钝化效果,并随着溶液浓度的提升钝化作用越明显。SnO2表面卤化作用的深入研究不仅对提高电池器件性能具有实际意义,还能够帮助理解太阳能电池界面现象,为界面改性提供新的研究思路。  相似文献   

9.
Perovskite solar cells (PSCs) fabricated with two-dimensional (2D) halide and 2D-3D mixed-halide materials are remarkable for their optoelectronic properties. The 2D perovskite structures are extremely stable but show limited charge transport and large bandgap for solar cell applications. To overcome these challenges, multidimensional 2D-3D perovskite materials are used to maintain simultaneously, a long-term stability, and high performance. In this review, we discuss the recent progress and the advantages of 2D and 2D-3D perovskite materials as absorber for solar cell applications. First, we discuss the structure and the unique properties of 2D and multidimensional 2D-3D perovskites materials. Second, the stability of 2D and 2D-3D mixed perovskites and the perspects of PSCs are hashed out.  相似文献   

10.
陈海宁 《应用化学》2018,35(8):916-924
由于具有成本低、工艺简单等优点,有机-无机杂化太阳能电池(PSCs)的研究和发展受到了广泛的关注,光电转换效率也快速提升到与传统晶体硅太阳能电池相当的水平。 然而,PSCs稳定性差的问题严重限制了其商业化。 在各种PSCs中,基于碳电极的无空穴传输层器件(C-PSCs)去除了影响稳定性的有机空穴传输层和金属电极,使得器件稳定性得到了明显的提高,是最具有应用前景的电池器件之一。 自从2013年首次报道以来,C-PSCs的各方面研究取得了很大的进展,效率也从最初的6.6%提高到现在的15.9%。 本综述将系统地介绍C-PSCs的最新研究进展,包括器件结构和工作原理、各部分研究进展(电子传输层、钙钛矿薄膜和碳电极),以及存在的问题和解决方案。  相似文献   

11.
近年来,钙钛矿光伏电池(PSCs)取得了突飞猛进的发展,迄今最高认证光电转换效率达到25.7%,但是钙钛矿材料常使用有毒的重金属元素铅,对环境和人体都有极大的危害,不利于其实际应用,因此发展无铅PSCs受到越来越多的关注。锡基钙钛矿材料具有优异的光电性质,特别是带隙窄、载流子迁移率高和激子复合能低,是无铅钙钛矿中最具有潜力的材料。反式(p-i-n型)锡基PSCs由于低迟滞效应、可低温制备及低成本等优点获得普遍关注,取得了一系列重要突破,目前最高效率已经突破14%,具有巨大的发展潜力。鉴于反式锡基钙钛矿太阳能的迅速发展,本文系统综述了反式锡基PSCs制备及稳定性研究进展,尤其关注反式锡基PSCs的界面修饰、锡基钙钛矿材料性能、构筑高质量锡基钙钛矿薄膜的方法以及提高稳定性的策略,并讨论了锡基PSCs的前景展望。  相似文献   

12.
Perovskite solar cells (PSCs) are highly efficient and are comparatively cheaper than the large silicon crystals primarily used in solar cells. Their outstanding photovoltaic performance makes them a potential alternative to silicon solar cells. While efficiency and photovoltaic performance have been investigated in recent decades, a knowledge gap on the degradation, economic feasibility and stability of PSCs exists, and their poor stability remains a barrier to commercialization. Thus, this review aims to fill this knowledge gap by focusing on approaches to improve PSCs’ thermal and chemical stability, and their economic viability under different conditions. The structure and manufacture of PSCs are also discussed along with an economic analysis of different perovskite devices. Improvements in thermal stability can be reached by incorporating inorganic materials into the PSC. A PSC model optimized with ZnO improves chemical stability by 8% and works well under low temperatures. To make PSCs more economically feasible, certain parts like counter electrodes (CE) and hole transport materials (HTMs) can be replaced with alternative elements like carbon and inorganic HTMs, respectively. PSCs with long durability and high conversion efficiency will expand the commercial prospects for this material. To bridge the lack of knowledge, further investigation is required on the sustainability and longevity of PSCs.  相似文献   

13.
Perovskite solar cells(PSCs) have attracted tremendous attention due to their outstanding performance within a short development. Radical molecules with unpaired single electrons have been widely used in energy-related fields, such as organic light-emitting diodes(OLEDs), organic field-effect transistors(OFETs), organic and dye-sensitized solar cells, batteries, thermoelectric conversion devices, etc. However, as far as we know, there has never been a systemic collection and analysis of the application of radical molecules in PSCs. Herein, we summarized the role of the radical molecule on perovskite(passivate trap defects, enhance oxygen stability and make perovskite band-bending) and charge transport layer(improve conductivity and mobility, enhance oxygen stability, modulate work function and decrease by-product generating). Meanwhile, future directions of making full use of radical molecules in improving the performances of PSCs were envisioned.  相似文献   

14.
自2009年以来,有机-无机卤化物钙钛矿因其独特的光学和电学性能,在光电材料领域受到了广泛的研究,尤其是Pb基的卤化物钙钛矿太阳能电池,目前光电转换效率高达创纪录的约25.2%,显示出强大的商业化潜力。然而,Pb元素的毒性及因而导致的环境隐患问题,一直是其产业化过程中的顾虑之一。因此,寻求能替代Pb的环境友好的元素,是一个十分重要的课题。Pb基钙钛矿材料优异的光电特性来源于Pb2+的最外层6s2孤对电子,与Pb元素同主族的Sn元素能够形成三维钙钛矿结构且同样具有惰性5s2外层电子结构,因而是替代Pb的首选。本文系统地介绍了Sn基钙钛矿的光学和电学性质,并从薄膜制备方法和不同的器件结构方面介绍Sn基钙钛矿太阳能电池的最新进展。  相似文献   

15.
Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL)for mesoporous perovskite solar cells.Due to the improved crystal phase,fihn thickness and nanopartMe size of TiO2 layer,which were controlled by varying the one-step hydrothermal reaction time and annealing time,the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm^2,and a maximum power conversion efficiency(PCE)of 19.87%.It is found that the ultra-high Jsc attributes to the excellent film quality,light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film.The results indicate that mix-phase mesoporous metal oxide fihns could be a promising candidate for producing effective ETLs and high efficiency PSCs.  相似文献   

16.
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85MA0.15Pb(I0.95Br0.05)3-based PSCs by incorporating Ti3C2Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb−Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.  相似文献   

17.
郭文明  钟敏 《无机化学学报》2017,33(7):1097-1118
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

18.
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

19.
Nowadays, both n-i-p and p-i-n perovskite solar cells (PSCs) device structures are reported to give high performance with photo conversion efficiencies (PCEs) above 20%. The efficiency of the PSCs is fundementally determined by the charge selective contact materials. Hence, by introducing proper contact materials with good charge selectivity, one could potentially reduce interfacial charge recombination as well as increase device performance. In the past few years, copious charge selective contact materials have been proposed. Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD. This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.  相似文献   

20.
张婧  何有军  闵杰 《物理化学学报》2018,34(11):1221-1238
有机-无机钙钛矿太阳能电池(PSCs)从2009年低于5%的能量转换效率到现在经过认证的超过22%的效率,成为科研热点和最有希望商业化的新型太阳能电池。在高性能的PSCs中,空穴传输材料是关键的一环,起到从钙钛矿活性层材料到对电极有效抽取和传输空穴的作用。本文在现有研究成果的基础上,对有机分子空穴传输材料在PSC中的应用进行总结,并强调分子材料结构对PSC器件性能(效率和稳定性)的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号