首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
张冀宁  曹爽  胡文平  朴玲钰 《化学进展》2020,32(9):1376-1385
自20世纪70年代以来,利用阳光将水分解,从而将太阳能转换为清洁可再生的氢气燃料成为人们关注的焦点。太阳能是取之不尽用之不竭的能源,而海水是地球上最丰富且易获取的自然资源,利用光电催化海水分解制氢成为目前解决实际能源问题和缓解淡水资源短缺的理想途径之一。本文总结了目前为止探索过光电催化分解海水制取氢气的研究工作,对研究内容和机理进行了梳理分析,并对光电催化海水制氢这一领域进行了展望。  相似文献   

2.
化石燃料的使用已经引起了严重的环境问题,例如空气污染和温室效应。同时,化石燃料作为不可再生能源无法一直满足人们不断的能源需求。因此,开发清洁可再生能源非常重要。氢是一种清洁无污染的可再生能源,可以缓解整个社会的能源压力。地球在一秒钟内接收到的太阳光能为1.7×10~(14) J,远远超过了人类一年的总能源消耗。因此,将太阳能转化为有价值的氢能对于减少对化石燃料的依赖具有重要的意义。自1972年藤岛昭和本多健一首次报道Ti O_2光催化剂以来,人们发现半导体可以通过电或光驱动水分解产生清洁无污染的氢气。通过这种方式产氢不仅可以替代化石燃料,还可以提供环保的可再生氢能源,受到了人们的广泛关注。光电化学(PEC)水分解可以利用太阳能生产清洁、可持续的氢能。由于光阳极上的析氧反应(OER)缓慢,因此总的能量转换效率仍然很低,限制了PEC水分解的实际应用。助催化剂对于改善光电化学水分解性能是必要的。贵金属氧化物已被证明是最有效的OER催化剂,因为它们在酸性和碱性条件下具有很高的OER活性。然而,这些贵金属氧化物成本高和储量低,极大地限制了它们的实际应用。因此,开发高活性和低成本的OER助催化剂非常重要。迄今为止,对第一周期过渡金属(例如,Fe,Co,Ni和Mn)助催化剂的合成研究比较集中。其中,铁在地球上含量丰富,并且毒性比其他过渡金属低,使其成为良好的助催化剂。另外,铁基化合物具有半导体/金属的特性和独特的电子结构,可以改善材料的电导率和对水的吸附性能。目前,各种具有高催化活性的铁基催化剂已经被设计来提高光电化学的水氧化效率。本文简要概述了羟基氧化铁,铁基层状双氢氧化物和铁基钙钛矿等的结构、合成和应用方面的最新研究进展,并讨论了这些助催化剂在光电化学水氧化的性能。  相似文献   

3.
Ye WANG 《物理化学学报》2017,33(12):2319-2320
正作为主要温室气体的CO_2,也是一种自然界大量存在的"碳资源",若能借助太阳能和风能等可再生能源获取电能分解水制得的氢气,将CO_2转化为化学品或燃料,不仅能实现温室气体的减排,而且有助于解决对化石燃料的过度依赖以及可再生能源的存储问题~1。作为一类高碳烃类  相似文献   

4.
高效光解水光电极设计的研究进展(英文)   总被引:1,自引:0,他引:1  
光电化学(PEC)分解水过程被认为是由太阳能制氢的一个有前景的路径,PEC的关键在于高效电极的设计.最近的十多年里有关材料设计、共催化剂研究和电极制造取得了重大进展,但仍存在一些关键挑战尚未解决,包括迫切所需的转化效率.作为PEC过程的三个关键步骤:光采集、电荷转移和表面反应,发生在很广的时间尺度(10~(–12)–10~0 s)内,如何组织好这一连串的步骤以促进各步骤间的无缝协作从而实现高效的PEC过程显得非常重要.基于高效稳定PEC光电极设计的研究进展,本文重点综述了整体考虑的三个主要标准,总结了一些基本原则和潜在的策略,尤其讨论了挑战与前景.  相似文献   

5.
李仁贵 《催化学报》2017,38(1):5-12
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

6.
能源危机和日益严重的环境污染问题是目前人类生存和发展面临的严峻挑战,在化石能源日益枯竭的今天,清洁太阳能的转化、储存和利用成为当前研究的热点.利用太阳能光催化分解水制氢,并将太阳能以氢能的形式储存是解决能源问题最理想  相似文献   

7.
能源危机和环境污染已成为影响全人类的严峻问题,太阳能驱动水分解制备清洁可再生的氢能是解决以上问题的有效途径之一,因此,近年来环境友好的光驱动制氢方式受到广泛关注.现阶段太阳能驱动水分解体系的研究热点和难点在于研发高催化活性且廉价的非贵金属催化剂.作为具有较大应用潜力的多电子转移催化剂,廉价过渡金属取代的多金属氧酸盐因其...  相似文献   

8.
光催化分解水制氢研究新进展   总被引:1,自引:2,他引:1       下载免费PDF全文
李秋叶  吕功煊 《分子催化》2007,21(6):590-598
众所周知化石燃料储量有限,而经济的高速发展带来的能源的快速消耗最终会使这些有限的资源消耗殆尽.人们期望通过提高替代能源,包括生物质能、风能和太阳能在内的可再生能源在整个能源结构中的比例,缓解这种危机和压力.实际上,只要我们能够利用辐射到地球表面上太阳能的一小部分,就可以满足我们目前的能源消耗.用太阳能从水中制氢是最吸引人的一条太阳能利用与储存路线.我们的地球3/4的区域被水覆盖,其中蕴藏着丰富的氢源.氢能以其清洁、无污染、热值高且贮存和运输方便而被视为最理想的替代能源,同时氢气又是现代化学工业最基础的原料.1972…  相似文献   

9.
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO_2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO_3:La,Rh/Au/BiVO_4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO_4和Ta_3N_5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta_3N_5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

10.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   

11.
近年来,光电化学分解水制氢(PEC)技术为未来的能源需求提供了一个清洁、可再生的途径.赤铁矿(α-Fe_2O_3)因其带隙小(~2.1 eV)、无毒、存储量大以及光电化学稳定等优点而受到广泛关注.然而,导电性差、空穴扩散长度短(2~4 nm)、表面水氧化动力学缓慢、激发态寿命短(10×10~(-12) sec)等缺点,极大地限制了Fe_2O_3光阳极的光转换效率.我们回顾了赤铁矿光阳极用于PEC水氧化的研究进展,主要集中在促进Fe_2O_3光阳极表面的水氧化反应,体相的电荷分离和迁移以及提高光吸收能力.最后,对Fe_2O_3光阳极面临的挑战和未来的发展进行了展望.  相似文献   

12.
氢气以其清洁无污染、燃烧值高等优点成为未来最具潜力的可再生能源之一,而清洁生产氢气的最佳选择之一即为裂解水. 利用太阳能模拟光合作用实现水的全分解产生氢气和氧气是目前最为理想的能源转化方式,并且已经引起了众多研究者的关注. 水分解的半反应之一--水氧化反应由于其过程复杂,一直是制约水分解的瓶颈. 所以寻找高效、稳定的水氧化催化剂便成为了突破该瓶颈的关键. 多金属氧酸盐是一类以前过渡金属氧簇为基本单元形成的多金属氧簇化合物. 由于多金属氧酸盐在物理、化学性质方面具有无法比拟的特性,使得其在催化、药物、纳米科技和材料科学等方面已被广泛地应用. 多金属氧酸盐的全无机配体可很好地抵御水氧化反应的强氧化性环境,故将其作为水氧化催化剂越来越引起研究者们的注意,并且已有多种多金属氧酸盐被设计为水氧化催化剂. 本文详细介绍了各种不同过渡金属取代的多金属氧酸盐水氧化催化剂的研究进展.  相似文献   

13.
李旭力  李宁  高旸钦  戈磊 《催化学报》2022,43(3):679-707
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化...  相似文献   

14.
不同压力下光热催化分解水制氢行为研究   总被引:2,自引:0,他引:2  
随着世界能源消耗总量的急剧增加和随之带来的环境污染问题的日趋严重,开发清洁的可再生能源已迫在眉睫.氢作为一种清洁的能源载体,使用后的产物仅为水,不会造成二次污染.将水转变为氢也是最好的太阳能的化学储存方式之一[1~6].  相似文献   

15.
王旺银 《催化学报》2022,43(4):895-897
人工光合成是利用太阳能等可再生能源通过连续催化反应将水和二氧化碳转化为液态燃料的过程,是减少二氧化碳排放、实现绿色低碳发展的一种重要方法.人工光合成的目标产物不仅包括二氧化碳转化与利用得到的能源小分子,还包括淀粉和蛋白质等生物基大分子.在自然光合作用中,高等植物、绿藻和蓝细菌首先利用太阳能将水氧化放出氧气并产生还原型辅...  相似文献   

16.
面对不可再生资源的快速消耗和环境污染的日益加重,寻找清洁可再生能源势在必行.氢能是一种清洁可再生的能源,是目前最有希望替代化石燃料的一种能源.电化学水分解可用来产生高纯氢气,其中析氢催化剂起着至关重要的作用.尽管贵金属铂基催化剂表现出优异的析氢性能,然而稀缺性和高成本限制了其大规模应用.因此,开发高效和地球存量丰富的电...  相似文献   

17.
祁育  章福祥 《化学学报》2022,80(6):827-838
利用太阳能光催化分解水制氢是解决能源环境问题并实现太阳能有效转化和储存最有前途的技术之一, 这一“圣杯”式反应经过几十年不懈努力取得了诸多重要研究进展. 本文将综述光催化分解水制氢体系的基本概念、活性测试方法与注意事项、光催化材料种类等; 并从光催化分解水制氢的光吸收、光生电荷分离和表面催化反应等基本过程和关键科学问题的角度总结其重要研究进展, 最后对于太阳能光催化分解水制氢的挑战和潜在的发展方向进行分析和展望. 希望通过本综述的简要介绍能让刚从事光催化分解水制氢研究的青年科技人员清晰地了解掌握该领域的一些基本概念、操作规范、研究总体进展和现状等.  相似文献   

18.
Kai Wu 《物理化学学报》2020,36(2):1910033-0
正多样化的清洁能源技术对我们社会的脱碳至关重要,析氢反应(HER)作为水分解全反应中的一个半反应,是将太阳能、风能等可再生能源转化为化学能的重要途径之一,减少为生产氢气而对化石燃料的消耗,为脱碳提供了一种可行的替代方案1。尽管目前以铂基催化剂为代表的贵金属催化剂在电催化条件下具有最高的电解水制氢效率,但其高昂的价格和稀缺的储量严重阻碍了其大规模  相似文献   

19.
“双碳目标”的实现需要精准的政策引导和开发可替代的清洁能源. 近年来, 氢能由于具有来源丰富、热值高、清洁低碳、应用场景多样等特点, 受到了学者们越来越多的关注. 在传统制氢技术中, 化石燃料制氢技术应用最为广泛, 但其制氢反应过程造成的能耗和温室气体释放量较大. 而光催化分解水制氢技术是将太阳能转换为氢能, 将太阳能以化学能的形式储存起来, 这样不仅能利用太阳能制取氢气, 而且可以将氢能与CO2结合起来生产高附加值的化学品, 在减少碳排放的同时, 实现碳氢资源的综合利用. 综述了可实现太阳能制氢的光催化制氢(PC)、光电催化制氢(PEC)和光伏电催化耦合制氢(PV-EC)技术的研究进展, 阐释了相关技术的基本原理, 介绍了制氢技术中的关键材料, 对三种制氢技术发展过程中太阳能制氢(STH)转化效率、材料稳定性的相关研究进行了详细总结. 最后对三种太阳能制氢技术面临的关键挑战和未来发展方向进行了探讨和展望.  相似文献   

20.
太阳能热化学分解水是一种高效生产清洁和可再生氢能源的方法.由于出色的催化活性和太阳能燃料生产能力,钙钛矿型的催化剂在热化学领域引起了强烈关注.我们采用改良的Pechini法合成了一系列钙铝掺杂的镧锰钙钛矿并系统考察了其在两步法热化学分解水中的产氢表现.为了优化热化学催化性能,我们进行了镧锰钙钛矿A,B位上钙和铝的掺杂量(从0.2到0.8)的详细考察.通过调整掺杂比例,得到了一种极其高效的钙钛矿催化剂La0.6Ca0.4Mn0.6Al0.4O3.当两步法热化学分解水在1400和1000℃之间,La0.6Ca0.4Mn0.6Al0.4O3取得了429μmol/g的出色产氢表现,比同等条件下基准催化剂氧化铈产氢结果高出8倍.与此同时,钙铝掺杂镧锰钙钛矿在两步法热化学循环测试中展现出极其稳定的催化活性.因此,这种新颖的钙铝掺杂镧锰钙钛矿具备巨大的潜质用于未来热化学太阳能燃料的实际生产.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号