首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove the existence of certain spanning subgraphs of graphs embedded in the torus and the Klein bottle. Matheson and Tarjan proved that a triangulated disc with n vertices can be dominated by a set of no more than n/3 of its vertices and thus, so can any finite graph which triangulates the plane. We use our existence theorems to prove results closely allied to those of Matheson and Tarjan, but for the torus and the Klein bottle.  相似文献   

2.
We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs. We characterize these graphs by finite combinatorial objects called labeling schemes. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of given degree, as well as most of their transitive groups of automorphisms. In addition,we are able to decide whether a given TLF-planar transitive graph is Cayley or not. This class contains all the one-ended planar Cayley graphs and the normal transitive tilings of the plane.  相似文献   

3.
Let G be a graph embedded in the Klein bottle with “representativity” at least four. We give a formula for the orientable genus of G, which also implies a polynomially bounded algorithm. The formula is in terms of the number of times certain closed curves on the Klein bottle intersect the graph. In particular, it shows that a cut-and-paste technique for re-embedding graphs is the best possible.  相似文献   

4.
This paper concerns finite, edge-transitive direct and strong products, as well as infinite weak Cartesian products. We prove that the direct product of two connected, non-bipartite graphs is edge-transitive if and only if both factors are edge-transitive and at least one is arc-transitive, or one factor is edge-transitive and the other is a complete graph with loops at each vertex. Also, a strong product is edge-transitive if and only if all factors are complete graphs. In addition, a connected, infinite non-trivial Cartesian product graph G is edge-transitive if and only if it is vertex-transitive and if G is a finite weak Cartesian power of a connected, edge- and vertex-transitive graph H, or if G is the weak Cartesian power of a connected, bipartite, edge-transitive graph H that is not vertex-transitive.  相似文献   

5.
We give a necessary and sufficient condition for a graphical regular representation to be adjacency-transitive, and provide an infinite family of finite simple undirected vertex-transitive graphs Γ, such that neither Γ nor Γ c is adjacency-transitive. Revised: March 24, 1998  相似文献   

6.
The subject of this paper are infinite, locally finite, vertex-transitive median graphs. It is shown that the finiteness of the Θ-classes of such graphs does not guarantee finite blocks. Blocks become finite if, in addition, no finite sequence of Θ-contractions produces new cut-vertices. It is proved that there are only finitely many vertex-transitive median graphs of given finite degree with finite blocks. An infinite family of vertex-transitive median graphs with finite intransitive blocks is also constructed and the list of vertex-transitive median graphs of degree four is presented. Sandi Klavžar: Supported by the Ministry of Science of Slovenia under the grant P1-0297. The author is also with the Faculty of Mathematics and Natural Sciences, University of Maribor, Slovenia and the Institute of Mathematics, Physics and Mechanics, Ljubljana.  相似文献   

7.
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map X on the torus is a quotient of an Archimedean tiling on the plane then the map X is semi-equivelar. We show that each semi-equivelar map on the torus or on the Klein bottle is a quotient of an Archimedean tiling on the plane.Vertex-transitive maps are semi-equivelar maps. We know that four types of semi-equivelar maps on the torus are always vertex-transitive and there are examples of other seven types of semi-equivelar maps which are not vertex-transitive. We show that the number of Aut(Y)-orbits of vertices for any semi-equivelar map Y on the torus is at most six. In fact, the number of orbits is at most three except one type of semi-equivelar maps. Our bounds on the number of orbits are sharp.  相似文献   

8.
LetG be an eulerian graph embedded on the Klein bottle. Then the maximum number of pairwise edge-disjoint orientation-reversing circuits inG is equal to the minimum number of edges intersecting all orientation-reversing circuits. This generalizes a theorem of Lins for the projective plane. As consequences we derive results on disjoint paths in planar graphs, including theorems of Okamura and of Okamura and Seymour.  相似文献   

9.
The following is a conjecture of Ulam: In any partition of the integer lattice on the plane into uniformly bounded sets, there exists a set that is adjacent to at least six other sets. Two sets are adjacent if each contain a vertex of the same unit square. This problem is generalized as follows. Given any uniformly bounded partitionP of the vertex set of an infinite graphG with finite maximum degree, letP (G) denote the graph obtained by letting each set of the partition be a vertex ofP (G) where two vertices ofP (G) are adjacent if and only if the corresponding sets have an edge between them. The Ulam number ofG is defined as the minimum of the maximum degree ofP (G) where the minimum is taken over all uniformly bounded partitionsP. We have characterized the graphs with Ulam number 0, 1, and 2. Restricting the partitions of the vertex set to connected subsets, we obtain the connected Ulam number ofG. We have evaluated the connected Ulam numbers for several infinite graphs. For instance we have shown that the connected Ulam number is 4 ifG is an infinite grid graph. We have settled the Ulam conjecture for the connected case by proving that the connected Ulam number is 6 for an infinite triangular grid graph. The general Ulam conjecture is equivalent to proving that the Ulam number of the infinite triangular grid graph equals 6. We also describe some interesting geometric consequences of the Ulam number, mainly concerning good drawings of infinite graphs.  相似文献   

10.
We define a family of graph bundles over cycles which embed naturally on the Klein bottle and which are analogous to the celebrated toroidal grid graphs (cartesian product of a cycle with a cycle). We give a criterion for a polyhedral map on the Klein bottle to fail to embed on the torus, and use this to calculate toroidal crossing numbers of two one-parameter infinite families of our Kleinical graphs.Mathematics Subject Classification (1991): 05C10  相似文献   

11.
We characterize the class of self-complementary vertex-transitive digraphs on a prime number p of vertices. Using this, we enumerate (i) self-complementary strongly vertex-transitive digraphs on p vertices, (ii) self-complementary vertex-transitive digraphs on p vertices, (iii) self-complementary vertex-transitive graphs on p vertices. Finally it is shown that every self-complementary vertex-transitive digraph on p vertices is either a tournament or a graph.  相似文献   

12.
We investigate vertex‐transitive graphs that admit planar embeddings having infinite faces, i.e., faces whose boundary is a double ray. In the case of graphs with connectivity exactly 2, we present examples wherein no face is finite. In particular, the planar embeddings of the Cartesian product of the r‐valent tree with K2 are comprehensively studied and enumerated, as are the automorphisms of the resulting maps, and it is shown for r = 3 that no vertex‐transitive group of graph automorphisms is extendable to a group of homeomorphisms of the plane. We present all known families of infinite, locally finite, vertex‐transitive graphs of connectivity 3 and an infinite family of 4‐connected graphs that admit planar embeddings wherein each vertex is incident with an infinite face. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 257–275, 2003  相似文献   

13.
H. A. Jung 《Combinatorica》1981,1(3):285-288
Results involving automorphisms and fragments of infinite graphs are proved. In particular for a given fragmentC and a vertex-transitive subgroupG of the automorphism group of a connected graph there exists σ≠G such that σ[C] ⊂C. This proves the countable case of a conjecture of L. Babai and M. E. Watkins concerning graphs allowing a vertex-transitive torsion group action. Dedicated to Prof. K. Wagner on his 70th birthday  相似文献   

14.
The power graph of a group is the graph whose vertex set is the group, two elements being adjacent if one is a power of the other. We observe that non-isomorphic finite groups may have isomorphic power graphs, but that finite abelian groups with isomorphic power graphs must be isomorphic. We conjecture that two finite groups with isomorphic power graphs have the same number of elements of each order. We also show that the only finite group whose automorphism group is the same as that of its power graph is the Klein group of order 4.  相似文献   

15.
Let be two families of closed curves on a surface , such that , each curve in intersects each curve in , and no point of is covered three times. When is the plane, the projective plane, or the Klein bottle, we prove that the total number of intersections in is at least 10mn/9 , 12mn/11 , and mn+10 -13 m 2 , respectively. Moreover, when m is close to n , the constants are improved. For instance, the constant for the plane, 10/9 , is improved to 8/5 , for n ≤ 5(m-1)/4 . Consequently, we prove lower bounds on the crossing number of the Cartesian product of two cycles, in the plane, projective plane, and the Klein bottle. All lower bounds are within small multiplicative factors from easily derived upper bounds. No general lower bound has been previously known, even on the plane. Received January 20, 1996, and in revised form October 21, 1996.  相似文献   

16.
A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G* increased by 2. We also show upper bounds on the looseness of graphs based on the number of vertices, the edge connectivity, and the girth of the dual graphs. These bounds improve the result of Negami for the looseness of plane triangulations. We also present infinite classes of graphs where the equalities are attained.  相似文献   

17.
We show that the result of Watkins (1990) [19] on constructing vertex-transitive non-Cayley graphs from line graphs yields a simple method that produces infinite families of vertex-transitive non-Cayley graphs from Cayley graphs generated by involutions. We also prove that the graphs arising this way are hamiltonian provided that their valency is at least six.  相似文献   

18.
It is well known that the edge-connectivity of a simple, connected, vertex-transitive graph attains its regular degree. It is then natural to consider the relationship between the graph’s edge-connectivity and the number of orbits of its automorphism group. In this paper, we discuss the edge connectedness of graphs with two orbits of the same size, and characterize when these double-orbit graphs are maximally edge connected and super-edge-connected. We also obtain a sufficient condition for some double-orbit graphs to be λ-optimal. Furthermore, by applying our results we obtain some results on vertex/edge-transitive bipartite graphs, mixed Cayley graphs and half vertex-transitive graphs.  相似文献   

19.
Self-Complementary Vertex-Transitive Graphs Need Not be Cayley Graphs   总被引:3,自引:0,他引:3  
A construction is given of an infinite family of finite self-complementary,vertex-transitive graphs which are not Cayley graphs. To theauthors' knowledge, these are the first known examples of suchgraphs. The nature of the construction was suggested by a generalstudy of the structure of self-complementary, vertex-transitivegraphs. It involves the product action of a wreath product ofpermutation groups. 2000 Mathematics Subject Classification05C25.  相似文献   

20.
A graph is said to be k-extendable if any independent set of k edges extends to a perfect matching. We shall show that every 5-connected graph of even order embedded on the projective plane and every 6-connected one embedded on the torus and the Klein bottle is 2-extendable and characterize the forbidden structures for 5-connected toroidal graphs to be 2-extendable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号