首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
本文研究二维非定常Stokes方程全离散稳定化有限元方法.首先给出关于时间向后一步Euler半离散格式,然后直接从该时间半离散格式出发,构造基于两局部高斯积分的稳定化全离散有限元格式,其中空间用P_1—P_1元逼近,证明有限元解的误差估计.本文的研究方法使得理论证明变得更加简便,也是处理非定常Stokes方程的一种新的途径.  相似文献   

2.
安静  孙萍  罗振东  黄晓鸣 《计算数学》2011,33(2):213-224
本文研究非定常Stokes方程的有限体积元方法,给出一种基于两个局部高斯积分的稳定化全离散格式,并给其有限体积元解的误差分析.  相似文献   

3.
In this article we consider the fully discrete two-level finite element Galerkin method for the two-dimensional nonstationary incompressible Navier-Stokes equations. This method consists in dealing with the fully discrete nonlinear Navier-Stokes problem on a coarse mesh with width $H$ and the fully discrete linear generalized Stokes problem on a fine mesh with width $h << H$. Our results show that if we choose $H=O(h^{1/2}$) this method is as the same stability and convergence as the fully discrete standard finite element Galerkin method which needs dealing with the fully discrete nonlinear Navier-Stokes problem on a fine mesh with width $h$. However, our method is cheaper than the standard fully discrete finite element Galerkin method.  相似文献   

4.
In this paper, we present a new stabilized finite element method for transient Navier-Stokes equations with high Reynolds number based on the projection of the velocity and pressure. We use Taylor-Hood elements and the equal order elements in space and second order difference in time to get the fully discrete scheme. The scheme is proven to possess the absolute stability and the optimal error estimates. Numerical experiments show that our method is effective for transient Navier-Stokes equations with high Reynolds number and the results are in good agreement with the value of subgrid-scale eddy viscosity methods, Petro-Galerkin finite element method and streamline diffusion method.  相似文献   

5.
A fully discrete stabilized scheme is proposed for solving the time-dependent convection-diffusion-reaction equations. A time derivative term results in our stabilized algorithm. The finite element method for spatial discretization and the backward Euler or Crank-Nicolson scheme for time discretization are employed. The long-time stability and convergence are established in this article. Finally, some numerical experiments are provided to confirm the theoretical analysis.  相似文献   

6.
周琴  潘雪琴  冯民富 《计算数学》2014,36(1):99-112
对于对流占优的Sobolev方程,提出了一种新的投影稳定化有限元方法,建立了半离散和全离散的投影稳定化格式,给出了解的稳定性和收敛性分析.该方法能够有效克服对流占优,与内罚方法相比,投影格式更简单,计算量更小,且得到的C—N格式是无条件稳定的,时间精度达到了二阶.最后,通过实验证明,数值结果与理论结果完全一致.  相似文献   

7.
1.引言本文的工作主要是讨论非定常的热传导一对流问题的向后一步的Euler全离散化的非线性Galerkin混合元解的存在性及其误差估计.该工作是对山中的同一问题研究的第二部分.在第一部分[1],我们已经讨论了此问题的半离散化的情形.由于所研究的目标都是非定常的热传导一对流问题,其背景是相同的,在此将不重复了,请参考[1].本文的安排如下,52先回顾非定常的热传导一对流问题的混合元解的经典性质.53回顾半离散化的非线性Galerkin混合元解的性质,并导出后续讨论需要的一些关于时间导数的估计.54讨论向后一步的Euler全离散化…  相似文献   

8.
In this paper, we present two types of unconditionally maximum principle preserving finite element schemes to the standard and conservative surface Allen–Cahn equations. The surface finite element method is applied to the spatial discretization. For the temporal discretization of the standard Allen–Cahn equation, the stabilized semi-implicit and the convex splitting schemes are modified as lumped mass forms which enable schemes to preserve the discrete maximum principle. Based on the above schemes, an operator splitting approach is utilized to solve the conservative Allen–Cahn equation. The proofs of the unconditionally discrete maximum principle preservations of the proposed schemes are provided both for semi- (in time) and fully discrete cases. Numerical examples including simulations of the phase separations and mean curvature flows on various surfaces are presented to illustrate the validity of the proposed schemes.  相似文献   

9.
In this paper, we study the finite element approximation for nonlinear thermal equation. Because the nonlinearity of the equation, our theoretical analysis is based on the error of temporal and spatial discretization. We consider a fully discrete second order backward difference formula based on a finite element method to approximate the temperature and electric potential, and establish optimal $L^2$error estimates for the fully discrete finite element solution without any restriction on the time-step size. The discrete solution is bounded in infinite norm. Finally, several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.  相似文献   

10.
罗振东  王烈衡 《计算数学》1998,20(4):431-448
In this paper, a fully discrete format of nonlinear Galerkin mixed element method with backward one-step Euler discretization of time for the non stationary conduction-convection problems is presented. The scheme is based on two finite element spaces XH and Xh for the approximation of the velocity, defined respectively on a coarse grid with grids size H and another fine grid with grid size h<< H, a finite element space Mh for the approximation of the pressure and two finite element spaces AH and Wh, for the approximation of the temperature,also defined respectivply on the coarse grid with grid size H and another fine grid with grid size h. The existence and the convergence of the fully discrete mixed element solution are shown. The scheme consists in using standard backward one step Euler-Galerkin fully discrete format at first L0 steps (L0 2) on fine grid with grid size h, but using nonlinear Galerkin mixed element method of backward one step Euler-Galerkin fully discrete format through L0 + 1 step to end step. We have proved that the fully discrete nonlinear Galerkin mixed element procedure with respect to the coarse grid spaces with grid size H holds superconvergence.  相似文献   

11.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

12.
In this paper, a class of nonlinear Riesz space-fractional Schrödinger equations are considered. Based on the standard Galerkin finite element method in space and Crank-Nicolson difference method in time, the semi-discrete and fully discrete systems are constructed. By Brouwer fixed point theorem and fractional Gagliardo-Nirenberg inequality, we prove the fully discrete system is uniquely solvable. Moreover, we focus on a rigorous analysis and consideration of the conservation and convergence properties for the semi-discrete and fully discrete systems. Finally, a linearized iterative finite element algorithm is introduced and some numerical examples are given to confirm the theoretical results.  相似文献   

13.
This paper studies a phase field model for the mixture of two immiscible and incompressible fluids. The model is described by a nonlinear parabolic system consisting of the nonstationary Stokes equations coupled with the Allen-Cahn equation through an extra phase induced stress term in the Stokes equations and a fluid induced transport term in the Allen-Cahn equation. Both semi-discrete and fully discrete finite element methods are developed for approximating the parabolic system. It is shown that the proposed numerical methods satisfy a discrete energy law which mimics the basic energy law for the phase field model. Error estimates are derived for the semi-discrete method, and the convergence to the phase field model and to its sharp interface limiting model are established for the fully discrete finite element method by making use of the discrete energy law. Numerical experiments are also presented to validate the theory and to show the effectiveness of the combined phase field and finite element approach.

  相似文献   


14.
In this article, we develop patch‐wise local projection‐stabilized conforming and nonconforming finite element methods for the convection–diffusion–reaction problems. It is a composition of the standard Galerkin finite element method, the patch‐wise local projection stabilization, and weakly imposed Dirichlet boundary conditions on the discrete solution. In this paper, a priori error analysis is established with respect to a patch‐wise local projection norm for the conforming and the nonconforming finite element methods. The numerical experiments confirm the efficiency of the proposed stabilization technique and validate the theoretical convergence rates.  相似文献   

15.
李宏  孙萍  尚月强  罗振东 《计算数学》2012,34(4):413-424
本文利用有限体积元方法研究二维粘弹性方程, 给出一种时间二阶精度的全离散化有限体积元格式, 并给出这种全离散化有限体积元解的误差估计, 最后用数值例子验证数值结果与理论结果是相吻合的. 通过与有限元方法和有限差分方法相比较, 进一步说明了全离散化有限体积元格式是求解二维粘弹性方程数值解的最有效方法之一.  相似文献   

16.
The non-stationary conduction–convection problem including the velocity vector field and the pressure field as well as the temperature field is studied with a finite volume element (FVE) method. A fully discrete FVE formulation and the error estimates between the fully discrete FVE solutions and the accuracy solution are provided. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary conduction–convection problem and is one of the most effective numerical methods by comparing the results of the numerical simulations of the FVE formulation with those of the numerical simulations of the finite element method and the finite difference scheme for the non-stationary conduction–convection problem.  相似文献   

17.
The fully discrete lumped mass finite element method is proposed for vibration analysis of elastic plate-plate structures. In the space directions, the longitudinal displacements on plates are discretized by conforming linear elements, and the transverse displacements are discretized by the Morley element. By means of the second order central difference for discretizing the time derivative and the technique of lumped masses, a fully discrete lumped mass finite element method is obtained, and two approaches to choosing the initial functions are also introduced. The error analysis for the method in the energy norm is established, and some numerical examples are included to validate the theoretical analysis.  相似文献   

18.
In this paper, we consider low‐order stabilized finite element methods for the unsteady Stokes/Navier‐Stokes equations with friction boundary conditions. The time discretization is based on the Euler implicit scheme, and the spatial discretization is based on the low‐order element (P1P1 or P1P0) for the approximation of the velocity and pressure. Moreover, some error estimates for the numerical solution of fully discrete stabilized finite element scheme are obtained. Finally, numerical experiments are performed to confirm our theoretical results.  相似文献   

19.
This paper gives the detailed numerical analysis of mixed finite element method for fractional Navier-Stokes equations.The proposed method is based on the mixed finite element method in space and a finite difference scheme in time.The stability analyses of semi-discretization scheme and fully discrete scheme are discussed in detail.Furthermore,We give the convergence analysis for both semidiscrete and flly discrete schemes and then prove that the numerical solution converges the exact one with order O(h2+k),where h and k:respectively denote the space step size and the time step size.Finally,numerical examples are presented to demonstrate the effectiveness of our numerical methods.  相似文献   

20.
In this article, a finite element scheme based on the Newton's method is proposed to approximate the solution of a nonlocal coupled system of parabolic problem. The Crank‐Nicolson method is used for time discretization. Well‐posedness of the problem is discussed at continuous and discrete levels. We derive a priori error estimates for both semidiscrete and fully discrete formulations. Results based on usual finite element method are provided to confirm the theoretical estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号