首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

2.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

3.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

4.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
A (k;g)‐cage is a k‐regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)‐cages are k‐edge‐connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)‐cages are k‐edge‐connected if g is odd. Combining our results, we conclude that the (k;g)‐cages are k‐edge‐connected. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 219–227, 2005  相似文献   

6.
In this article, we study the existence of a 2‐factor in a K1, n‐free graph. Sumner [J London Math Soc 13 (1976), 351–359] proved that for n?4, an (n?1)‐connected K1, n‐free graph of even order has a 1‐factor. On the other hand, for every pair of integers m and n with m?n?4, there exist infinitely many (n?2)‐connected K1, n‐free graphs of even order and minimum degree at least m which have no 1‐factor. This implies that the connectivity condition of Sumner's result is sharp, and we cannot guarantee the existence of a 1‐factor by imposing a large minimum degree. On the other hand, Ota and Tokuda [J Graph Theory 22 (1996), 59–64] proved that for n?3, every K1, n‐free graph of minimum degree at least 2n?2 has a 2‐factor, regardless of its connectivity. They also gave examples showing that their minimum degree condition is sharp. But all of them have bridges. These suggest that the effects of connectivity, edge‐connectivity and minimum degree to the existence of a 2‐factor in a K1, n‐free graph are more complicated than those to the existence of a 1‐factor. In this article, we clarify these effects by giving sharp minimum degree conditions for a K1, n‐free graph with a given connectivity or edge‐connectivity to have a 2‐factor. Copyright © 2010 Wiley Periodicals, Inc. J Graph Theory 68:77‐89, 2011  相似文献   

7.
Let G = (V,E) be a graph or digraph and r : VZ+. An r‐detachment of G is a graph H obtained by ‘splitting’ each vertex ν ∈ V into r(ν) vertices. The vertices ν1,…,νr(ν) obtained by splitting ν are called the pieces of ν in H. Every edge uν ∈ E corresponds to an edge of H connecting some piece of u to some piece of ν. Crispin Nash‐Williams 9 gave necessary and sufficient conditions for a graph to have a k‐edge‐connected r‐detachment. He also solved the version where the degrees of all the pieces are specified. In this paper, we solve the same problems for directed graphs. We also give a simple and self‐contained new proof for the undirected result. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 67–77, 2003  相似文献   

8.
A sequence r1, r2, …, r2n such that ri=rn+ i for all 1≤in is called a repetition. A sequence S is called non‐repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are colored. A trail is called non‐repetitive if the sequence of colors of its edges is non‐repetitive. If G is a plane graph, a facial non‐repetitive edge‐coloring of G is an edge‐coloring such that any facial trail (i.e. a trail of consecutive edges on the boundary walk of a face) is non‐repetitive. We denote π′f(G) the minimum number of colors of a facial non‐repetitive edge‐coloring of G. In this article, we show that π′f(G)≤8 for any plane graph G. We also get better upper bounds for π′f(G) in the cases when G is a tree, a plane triangulation, a simple 3‐connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 38–48, 2010  相似文献   

9.
王世英  林上为 《数学研究》2006,39(4):335-344
限制边连通度作为边连通度的推广,是计算机互连网络可靠性的一个重要度量.Superλ-′是比限制边连通度更精确的一个网络可靠性指标.一个图是Superλ-′的,如果它的任一最小限制边割都孤立一条有最小边度的边.本文考虑一类重要的网络模型-无向K autz图UK(d,n)的限制边连通度λ,′证明了当d 3,n 2时,λ(′UK(d,n))=4d-4,并进一步指出此时的UK(d,n)是Superλ-′的.  相似文献   

10.
A graph G = (V, E) is called weakly four‐connected if G is 4‐edge‐connected and G ? x is 2‐edge‐connected for all xV. We give sufficient conditions for the existence of ‘splittable’ vertices of degree four in weakly four‐connected graphs. By using these results we prove that every minimally weakly four‐connected graph on at least four vertices contains at least three ‘splittable’ vertices of degree four, which gives rise to an inductive construction of weakly four‐connected graphs. Our results can also be applied in the problem of finding 2‐connected orientations of graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 217–229, 2006  相似文献   

11.
A graph G with maximum degree Δ and edge chromatic number χ′(G)>Δ is edge‐Δ‐critical if χ′(G?e)=Δ for every edge e of G. It is proved here that the vertex independence number of an edge‐Δ‐critical graph of order n is less than . For large Δ, this improves on the best bound previously known, which was roughly ; the bound conjectured by Vizing, which would be best possible, is . © 2010 Wiley Periodicals, Inc. J Graph Theory 66:98‐103, 2011  相似文献   

12.
A graph G is class II, if its chromatic index is at least Δ + 1. Let H be a maximum Δ‐edge‐colorable subgraph of G. The paper proves best possible lower bounds for |E(H)|/|E(G)|, and structural properties of maximum Δ‐edge‐colorable subgraphs. It is shown that every set of vertex‐disjoint cycles of a class II graph with Δ≥3 can be extended to a maximum Δ‐edge‐colorable subgraph. Simple graphs have a maximum Δ‐edge‐colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ‐edge‐colorable subgraph of a simple graph is always class I. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
《Journal of Graph Theory》2018,88(4):577-591
Given a zero‐sum function with , an orientation D of G with in for every vertex is called a β‐orientation. A graph G is ‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected graph is ‐connected. A graph is ‐extendable at vertex v if any preorientation at v can be extended to a β‐orientation of G for any zero‐sum function β. We observe that if every 5‐edge‐connected essentially 6‐edge‐connected graph is ‐extendable at any degree five vertex, then the above‐mentioned conjecture by Jaeger et al. holds as well. Furthermore, applying the partial flow extension method of Thomassen and of Lovász et al., we prove that every graph with at least four edge‐disjoint spanning trees is ‐connected. Consequently, every 5‐edge‐connected essentially 23‐edge‐connected graph is ‐extendable at any degree five vertex.  相似文献   

14.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

15.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

17.
Using the well‐known Theorem of Turán, we present in this paper degree sequence conditions for the equality of edge‐connectivity and minimum degree, depending on the clique number of a graph. Different examples will show that these conditions are best possible and independent of all the known results in this area. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 234–245, 2003  相似文献   

18.
For a connected graph G=(V,E), an edge set SE is a 3-restricted edge cut if GS is disconnected and every component of GS has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by λ3(G). A graph G is called minimally 3-restricted edge connected if λ3(Ge)<λ3(G) for each edge eE. A graph G is λ3-optimal if λ3(G)=ξ3(G), where , ω(U) is the number of edges between U and V?U, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ3-optimal except the 3-cube.  相似文献   

19.
Tutte's 3‐Flow Conjecture states that every 2‐edge‐connected graph with no 3‐cuts admits a 3‐flow. The 3‐Flow Conjecture is equivalent to the following: let G be a 2‐edge‐connected graph, let S be a set of at most three vertices of G; if every 3‐cut of G separates S then G has a 3‐flow. We show that minimum counterexamples to the latter statement are 3‐connected, cyclically 4‐connected, and cyclically 7‐edge‐connected.  相似文献   

20.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号