首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gierer–Meinhardt system as a molecularly plausible model has been proposed to formalize the observation for pattern formation. In this paper, the Gierer–Meinhardt model without the saturating term is considered. By the linear stability analysis, we not only give out the conditions ensuring the stability and Turing instability of the positive equilibrium but also find the parameter values where possible Turing–Hopf and spatial resonance bifurcation can occur. Then we develop the general algorithm for the calculations of normal form associated with codimension-2 spatial resonance bifurcation to better understand the dynamics neighboring of the bifurcating point. The spatial resonance bifurcation reveals the interaction of two steady state solutions with different modes. Numerical simulations are employed to illustrate the theoretical results for both the Turing–Hopf bifurcation and spatial resonance bifurcation. Some expected solutions including stable spatially inhomogeneous periodic solutions and coexisting stable spatially steady state solutions evolve from Turing–Hopf bifurcation and spatial resonance bifurcation respectively.  相似文献   

2.
The ratio-dependent predator–prey model exhibits rich dynamics due to the singularity of the origin. Harvesting in a ratio-dependent predator–prey model is relatively an important research project from both ecological and mathematical points of view. In this paper, we study the temporal, spatial and spatiotemporal dynamics of a ratio-dependent predator–prey diffusive model where the predator population harvest at catch-per-unit-effort hypothesis. For the spatially homogeneous model, we derive conditions for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solution by the center manifold and the normal form theory. For the reaction–diffusion model, firstly it is shown that Turing (diffusion-driven) instability occurs, which induces spatial inhomogeneous patterns. Then it is demonstrated that the model exhibit Hopf bifurcation which produces temporal inhomogeneous patterns. Finally, the existence and non-existence of positive non-constant steady-state solutions are established. Moreover, numerical simulations are performed to visualize the complex dynamic behavior.  相似文献   

3.
In this paper, we study a delayed diffusive predator-prey model with fear effect and Holling II functional response. The stability of the positive equilibrium is investigated. We find that time delay can destabilize the stable equilibrium and induce Hopf bifurcation. Diffusion may lead to Turing instability and inhomogeneous periodic solutions. Through the theory of center manifold and normal form, some detailed formulas for determining the of Hopf bifurcation are presented. Some numerical simulations are also provided.  相似文献   

4.
In this paper, we deal with the effect of the shape of herd behavior on the interaction between predator and prey. The model analysis was studied in three parts. The first, The analysis of the system in the absence of spatial diffusion and the time delay, where the local stability of the equilibrium states, the existence of Hopf bifurcation have been investigated. For the second part, the spatiotemporal dynamics introduce by self diffusion was determined, where the existence of Hopf bifurcation, Turing driven instability, Turing-Hopf bifurcation point have been proved. Further, the order of Hopf bifurcation points and regions of the stability of the non trivial equilibrium state was given. In the last part of the paper, we studied the delay effect on the stability of the non trivial equilibrium, where we proved that the delay can lead to the instability of interior equilibrium state, and also the existence of Hopf bifurcation. A numerical simulation was carried out to insure the theoretical results.  相似文献   

5.
This article discusses a predator–prey system with predator saturation and competition functional response. The local stability, existence of a Hopf bifurcation at the coexistence equilibrium and stability of bifurcating periodic solutions are obtained in the absence of diffusion. Further, we discuss the diffusion-driven instability, Hopf bifurcation for corresponding diffusion system with zero flux boundary condition and Turing instability region regarding the parameters are established. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

6.
In this paper, we study the spatiotemporal patterns of a Brusselator model with discrete time-space by using the coupled mapping lattice (CML) model. The existence and stability conditions of the equilibrium point are obtained by using linear stability analysis. Then, applying the center manifold reduction theorem and the bifurcation theory, the parametric conditions of the flip and the Neimark-Sacker bifurcation are described respectively. Under space diffusion, the model admits the Turing instability at stable homogeneous solutions under some certain conditions. Two nonlinear mechanisms, including flip-Turing instability and Neimark-Sacker-Turing instability, are presented. Through numerical simulation, periodic windows, invariant circles, chaotic phenomenon and some interesting spatial patterns are found.  相似文献   

7.
A diffusive predator–prey system with the network connection and harvesting policy is investigated in the present paper. The global existence and boundedness of the positive solutions to the parabolic equations are analyzed. Hereafter, a priori estimates and non-existence of the non-constant steady states are investigated for the corresponding elliptic equation. Next, we focus on the network connect model. The stability of the positive equilibrium, the Hopf bifurcation, and the Turing instability of networked system are explored. By using the multiple time scale (MTS), the direction of the Hopf bifurcation is determined. It is found that the networked system may admit a supercritical or subcritical Hopf bifurcation. For the Turing instability, the positive equilibrium will change its stability from an unstable state to a stable one with the change of the connecting probability. That is not the case in the model without network structure. Theoretical results also show that the model can create rich dynamical behaviors and numerical simulations well verify the validity of the theoretical analysis.  相似文献   

8.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

9.
The interactions of diffusion-driven Turing instability and delay-induced Hopf bifurcation always give rise to rich spatiotemporal dynamics. In this paper, we first derive the algorithm for the normal forms associated with the Turing-Hopf bifurcation in the reaction-diffusion system with delay, which can be used to investigate the spatiotemporal dynamical classification near the Turing-Hopf bifurcation point in the parameter plane. Then, we consider a diffusive predator-prey model with weak Allee effect and delay. Through investigating the dynamics of the corresponding normal form of Turing-Hopf bifurcation induced by diffusion and delay, the spatiotemporal dynamics near this bifurcation point can be divided into six categories. Especially, stable spatially homogeneous/inhomogeneous periodic solutions and steady states, coexistence of two stable spatially inhomogeneous periodic solutions, coexistence of two stable spaially inhomogeneous steady states and the transition from one kind of spatiotemporal patterns to another are found.  相似文献   

10.
We consider in this paper an ecological model, in a predator–prey interaction with the presence of a herd behavior. For the analysis of the model, the existence of positive solution and also the existence Hopf bifurcation, Turing driven instability, and Turing–Hopf bifurcation point have bee proved. Then by calculating the normal form, on the center of the manifold associated to the Hopf bifurcation points, the stability of the periodic solution has been proved. In the last part of the paper, numerical simulations has been given to illustrate our theoretical analysis.  相似文献   

11.
在齐次Neumann边界条件下研究一类Degn-Harrison反应扩散系统.首先讨论常微分系统正平衡点的稳定性和Hopf分支,其次研究扩散系统,给出扩散系数对正平衡点稳定性的影响,建立系统的Turing不稳定性,同时在扩散系数满足一定条件时给出Hopf分支的存在性.  相似文献   

12.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Complex spatiotemporal dynamics of a diffusive predator-prey system involving additional food supply to predator and intra-specific competition among predator, are investigated. We establish critical conditions of the occurrence of Turing instability, which are necessary and sufficient. Furthermore, we also establish conditions of the occurrence of codimension-2 Turing-Hopf bifurcation and Turing-Turing bifurcation, by exploring interactions of Turing bifurcations and Hopf bifurcation. For Turing-Hopf bifurcation, by analyzing normal form truncated to order 3 which are derived by applying normal form method, it is shown that under proper conditions, diffusive predator-prey system generates interesting spatial, temporal and spatiotemporal patterns, including a pair of spatially inhomogeneous steady states, a spatially homogeneous periodic solution and a pair of spatially inhomogeneous periodic solutions. And numerical simulations are also shown to support theory analysis. Moreover, it is found that proper intra-specific competition among predator helps generate complex spatiotemporal dynamics. And, proper additional food supply to predator helps control the population fluctuations of predator and prey, while large quantity and high quality of additional food supply will lead to the extinction of prey and make predator change the source of food, which finally destroy the ecosystem. These investigations might help understand complex spatiotemporal dynamics of predator-prey system involving additional food supply to predator and intra-specific competition among predator, and help conserve species in an ecosystem via supplying suitable additional food.  相似文献   

14.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Lengyel–Epstein reaction–diffusion system of the CIMA reaction is considered. We derive the precise conditions on the parameters so that the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become Turing unstable or diffusively unstable. We also perform a detailed Hopf bifurcation analysis to both the ODE and PDE models, and derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution.  相似文献   

16.
In this paper, we consider a predator–prey model with herd behavior and prey‐taxis subject to the homogeneous Neumann boundary condition. First, by analyzing the characteristic equation, the local stability of the positive equilibrium is discussed. Then, choosing prey‐tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of nonconstant solutions bifurcating from the positive equilibrium by an abstract bifurcation theory, and find the stable bifurcating solutions near the bifurcation point under suitable conditions. We have shown that prey‐taxis can destabilize the uniform equilibrium and yields the occurrence of spatial patterns. Furthermore, some numerical simulations to illustrate the theoretical analysis are also carried out, Turing patterns such as spots pattern, spots–strip pattern, strip pattern, stable nonconstant steady‐state solutions, and spatially inhomogeneous periodic solutions are obtained, which also expand our theoretical results.  相似文献   

17.
In this paper, a diffusive predator–prey system with Holling III functional response and nonconstant death rate subject to Neumann boundary condition is considered. We study the stability of equilibria, and Turing instability of the positive equilibrium. We also perform a detailed Hopf bifurcation analysis to PDE system, and derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution. In addition, some numerical simulations are carried out.  相似文献   

18.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

19.
This paper presents a qualitative study of a diffusive predator–prey system with the hunting cooperation functional response. For the system without diffusion, the existence, stability and Hopf bifurcation of the positive equilibrium are explicitly determined. It is shown that the hunting cooperation affects not only the existence of the positive equilibrium but also the stability. For the diffusive system, the stability and cross-diffusion driven Turing instability are investigated according to the relationship of the self-diffusion and the cross-diffusion coefficients. Stability and cross-diffusion instability regions are theoretically determined in the plane of the cross-diffusion coefficients. The technique of multiple time scale is employed to deduce the amplitude equation of Turing bifurcation and then pattern dynamics driven by the cross-diffusion is also investigated by the corresponding amplitude equation.  相似文献   

20.
The aim of this paper is to study the stability and Hopf bifurcation in a general class of differential equation with nonlocal delayed feedback that models the population dynamics of a two age structured spices. The existence of Hopf bifurcation is firstly established after delicately analyzing the eigenvalue problem of the linearized nonlocal equation. The direction of the Hopf bifurcation and stability of the bifurcated periodic solutions are then investigated by means of center manifold reduction. Subsequently, we apply our main results to explore the spatial‐temporal patterns of the nonlocal Mackey‐Glass equation. We obtain both spatially homogeneous and inhomogeneous periodic solutions and numerically show that the former is stable while the latter is unstable. We also show that the inhomogeneous periodic solutions will eventually tend to homogeneous periodic solutions after transient oscillations and increasing of the immature mobility constant will shorten the transient oscillation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号