首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this article, the homotopy analysis method has been applied to solve nonlinear differential equations of fractional order. The validity of this method has successfully been accomplished by applying it to find the solution of two nonlinear fractional equations. The results obtained by homotopy analysis method have been compared with those exact solutions. The results show that the solution of homotopy analysis method is good agreement with the exact solution.  相似文献   

2.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

3.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

4.
In this work, we implement a relatively analytical technique, the homotopy perturbation method (HPM), for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations which applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. He’s homotopy perturbation method (HPM) which does not need small parameter is implemented for solving the differential equations. It is predicted that HPM can be found widely applicable in engineering.  相似文献   

5.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Variational iteration method has been successfully implemented to handle linear and nonlinear differential equations. The main property of the method is its flexibility and ability to solve nonlinear equations accurately and conveniently. In this paper, first, a general framework of the variational iteration method is presented for analytic treatment of differential equations of fractional order where the fractional derivatives are described in Caputo sense. Second, the new framework is used to compute approximate eigenvalues and the corresponding eigenfunctions for boundary value problems with fractional derivatives. Numerical examples are tested to show the pertinent features of this method. This approach provides a new way to investigate eigenvalue problems with fractional order derivatives.  相似文献   

7.
In the present article, the new exact solutions of fractional coupled Schr\"{o}dinger type equations have been studied by using a new reliable analytical method. We applied a relatively new method for finding some new exact solutions of time fractional coupled equations viz. time fractional coupled Schr\"{o}dinger--KdV and coupled Schr\"{o}dinger--Boussinesq equations. The fractional complex transform have been used here along with the property of local fractional calculus for reduction of fractional partial differential equations (FPDE) to ordinary differential equations (ODE). The obtained results have been plotted here for demonstrating the nature of the solutions.  相似文献   

8.
In this article, the homotopy analysis method is used to obtain the approximate analytical solutions of the non-linear Swift Hohenberg equation with fractional time derivative. The fractional derivative is described in Caputo sense. Numerical results reveal that the method is easy to implement, reliable and accurate when applied to time fractional nonlinear partial differential equations. Effects of parameters of physical importance on the probability density function and the convergence of the approximate series solution using residual error formula with the proper choices of auxiliary parameter for various fractional Brownian motions and standard motion are depicted through graphs and tables for different particular cases.  相似文献   

9.
The Banach fixed point theorem and the nonlinear alternative of Leray-Schauder type are used to investigate the existence of solutions for fractional order functional and neutral functional differential equations with infinite delay.  相似文献   

10.
In this article,we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE).We construct a formal power series solution for our considering FDE and prove convergence of formal solutions under conditions.We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function.  相似文献   

11.
In this article, the new exact travelling wave solutions of the nonlinear space‐time fractional Burger's, the nonlinear space‐time fractional Telegraph and the nonlinear space‐time fractional Fisher equations have been found. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order in the sense of the Jumarie's modified Riemann–Liouville derivative. The ‐expansion method is effective for constructing solutions to the nonlinear fractional equations, and it appears to be easier and more convenient by means of a symbolic computation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The current article devoted on the new method for finding the exact solutions of some time‐fractional Korteweg–de Vries (KdV) type equations appearing in shallow water waves. We employ the new method here for time‐fractional equations viz. time‐fractional KdV‐Burgers and KdV‐mKdV equations for finding the exact solutions. We use here the fractional complex transform accompanied by properties of local fractional calculus for reduction of fractional partial differential equations to ordinary differential equations. The obtained results are demonstrated by graphs for the new solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

14.
We analyze self-similar solutions to a nonlinear fractional diffusion equation and fractional Burgers/Korteweg–deVries equation in one spatial variable. By using Lie-group scaling transformation, we determined the similarity solutions. After the introduction of the similarity variables, both problems are reduced to ordinary nonlinear fractional differential equations. In two special cases exact solutions to the ordinary fractional differential equation, which is derived from the diffusion equation, are presented. In several other cases the ordinary fractional differential equations are solved numerically, for several values of governing parameters. In formulating the numerical procedure, we use special representation of a fractional derivative that is recently obtained.  相似文献   

15.
In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give the sufficient condition that guarantees fractional viability of a locally closed set with respect to nonlinear function. As an example we discuss positivity of solutions, particularly in linear case.  相似文献   

16.
In this paper, the time fractional partial differential equations are investigated by means of the homotopy analysis method. This technique is extended to study the partial differential equations of fractal order for the first time. The accurate series solutions are obtained. This indicates the validity and great potential of the homotopy analysis method for solving nonlinear fractional partial differential equations.  相似文献   

17.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

18.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.  相似文献   

19.
In this article, the homotopy analysis method is applied to solve nonlinear fractional partial differential equations. On the basis of the homotopy analysis method, a scheme is developed to obtain the approximate solution of the fractional KdV, K(2,2), Burgers, BBM‐Burgers, cubic Boussinesq, coupled KdV, and Boussinesq‐like B(m,n) equations with initial conditions, which are introduced by replacing some integer‐order time derivatives by fractional derivatives. The homotopy analysis method for partial differential equations of integer‐order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions of the studied models are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

20.
In this paper, the modified fractional reduced differential transform method (MFRDTM) has been proposed and it is implemented for solving fractional KdV (Korteweg-de Vries) equations. The fractional derivatives are described in the Caputo sense. In this paper, the reduced differential transform method is modified to be easily employed to solve wide kinds of nonlinear fractional differential equations. In this new approach, the nonlinear term is replaced by its Adomian polynomials. Thus the nonlinear initial-value problem can be easily solved with less computational effort. In order to show the power and effectiveness of the present modified method and to illustrate the pertinent features of the solutions, several fractional KdV equations with different types of nonlinearities are considered. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional KdV equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号