首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The semi-infinite programming (SIP) problem is a program with infinitely many constraints. It can be reformulated as a nonsmooth nonlinear programming problem with finite constraints by using an integral function. Due to the nondifferentiability of the integral function, gradient-based algorithms cannot be used to solve this nonsmooth nonlinear programming problem. To overcome this difficulty, we present a robust smoothing sequential quadratic programming (SQP) algorithm for solving the nonsmooth nonlinear programming problem. At each iteration of the algorthm, we need to solve only a quadratic program that is always feasible and solvable. The global convergence of the algorithm is established under mild conditions. Numerical results are given. Communicated by F. Giannessi His work was supported by the Hong Kong Research Grant Council His work was supported by the Australian Research Council.  相似文献   

2.
In this paper, we consider a class of optimal control problems which is governed by nonsmooth functional inequality constraints involving convolution. First, we transform it into an equivalent optimal control problem with smooth functional inequality constraints at the expense of doubling the dimension of the control variables. Then, using the Chebyshev polynomial approximation of the control variables, we obtain an semi-infinite quadratic programming problem. At last, we use the dual parametrization technique to solve the problem.  相似文献   

3.
In this paper, we consider an optimal zero-forcing beamformer design problem in multi-user multiple-input multiple-output broadcast channel. The minimum user rate is maximized subject to zero-forcing constraints and power constraint on each base station antenna array element. The natural formulation leads to a nonconvex optimization problem. This problem is shown to be equivalent to a convex optimization problem with linear objective function, linear equality and inequality constraints and quadratic inequality constraints. Here, the indirect elimination method is applied to reduce the convex optimization problem into an equivalent convex optimization problem of lower dimension with only inequality constraints. The primal-dual interior point method is utilized to develop an effective algorithm (in terms of computational efficiency) via solving the modified KKT equations with Newton method. Numerical simulations are carried out. Compared to algorithms based on a trust region interior point method and sequential quadratic programming method, it is observed that the method proposed is much superior in terms of computational efficiency.  相似文献   

4.
本文研究了不等式约束的非线性规划问题.利用带滤子的无二次子规划(QP-free)非可行域方法,构造一个等价于原约束问题的一阶KKT条件的非光滑方程组,给出解这个方程组的迭代算法,并获得算法的全局收敛性.  相似文献   

5.
《Optimization》2012,61(2-3):179-196
For solving the smooth constrained nonlinear programming problem, sequential quadratic programming (SQP) methods are considered to be the standard tool, as long as they are applicable. However one possible situation preventing the successful solution by a standard SQP-technique, arises if problems with a very large number of constraints are to be solved. Typical applications are semi-infinite or min-max optimization, optimal control or mechanical structural optimization. The proposed technique proceeds from a user defined number of linearized constraints, that is to be used internally to determine the size of the quadratic programming subproblem. Significant constraints are then selected automatically by the algorithm. Details of the numerical implementation and some experimental results are presented  相似文献   

6.
On piecewise quadratic Newton and trust region problems   总被引:1,自引:0,他引:1  
Some recent algorithms for nonsmooth optimization require solutions to certain piecewise quadratic programming subproblems. Two types of subproblems are considered in this paper. The first type seeks the minimization of a continuously differentiable and strictly convex piecewise quadratic function subject to linear equality constraints. We prove that a nonsmooth version of Newton’s method is globally and finitely convergent in this case. The second type involves the minimization of a possibly nonconvex and nondifferentiable piecewise quadratic function over a Euclidean ball. Characterizations of the global minimizer are studied under various conditions. The results extend a classical result on the trust region problem. Partially supported by National University of Singapore under grant 930033.  相似文献   

7.
In this paper, a line search sequential quadratic programming (SQP) approach to a system of nonlinear equations (SNE) is taken. In this method, the system of nonlinear equations is transformed into a constrained nonlinear programming problem at each step, which is then solved using SQP algorithms with a line search strategy. Furthermore, at each step, some equations, which are satisfied at the current point, are treated as constraints and the others act as objective functions. In essence, constrained optimization strategies are utilized to cope with the system of nonlinear equations.  相似文献   

8.
求解带均衡约束数学规划问题的一个连续化方法   总被引:3,自引:0,他引:3  
李飞  徐成贤 《计算数学》2004,26(1):3-12
In this paper, a continuation method for mathematical programs with equilibrium constraints (MPEC) is proposed. By using the KKT conditions for the variational inequality constraints, the MPEC is firstly reformulated as a nonsmooth constrained optimization problem, then we solve a sequence of smooth perturbation problems, which progressively approximate the nonsmooth problem, and study the convergence of the proposed method. Numerical results showing feasibility of the approach are given.  相似文献   

9.
提出求解含平衡约束数学规划问题(简记为MPEC问题)的熵函数法,在将原问题等价改写为单层非光滑优化问题的基础上,通过熵函数逼近,给出求解MPEC问题的序列光滑优化方法,证明了熵函数逼近问题解的存在性和算法的全局收敛性,数值算例表明了算法的有效性。  相似文献   

10.
In this paper, the nonlinear minimax problems with inequality constraints are discussed. Based on the idea of simple sequential quadratically constrained quadratic programming algorithm for smooth constrained optimization, an alternative algorithm for solving the discussed problems is proposed. Unlike the previous work, at each iteration, a feasible direction of descent called main search direction is obtained by solving only one subprogram which is composed of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the constrained functions. Then a high-order correction direction used to avoid the Maratos effect is computed by updating the main search direction with a system of linear equations. The proposed algorithm possesses global convergence under weak Mangasarian–Fromovitz constraint qualification and superlinear convergence under suitable conditions with the upper-level strict complementarity. At last, some preliminary numerical results are reported.  相似文献   

11.
An efficient algorithm for solving nonlinear programs with noisy equality constraints is introduced and analyzed. The unknown exact constraints are replaced by surrogates based on the bundle idea, a well-known strategy from nonsmooth optimization. This concept allows us to perform a fast computation of the surrogates by solving simple quadratic optimization problems, control the memory needed by the algorithm, and prove the differentiability properties of the surrogate functions. The latter aspect allows us to invoke a sequential quadratic programming method. The overall algorithm is of the quasi-Newton type. Besides convergence theorems, qualification results are given and numerical test runs are discussed.  相似文献   

12.
In solving certain optimization problems, the corresponding Lagrangian dual problem is often solved simply because in these problems the dual problem is easier to solve than the original primal problem. Another reason for their solution is the implication of the weak duality theorem which suggests that under certain conditions the optimal dual function value is smaller than or equal to the optimal primal objective value. The dual problem is a special case of a bilevel programming problem involving Lagrange multipliers as upper-level variables and decision variables as lower-level variables. Another interesting aspect of dual problems is that both lower and upper-level optimization problems involve only box constraints and no other equality of inequality constraints. In this paper, we propose a coevolutionary dual optimization (CEDO) algorithm for co-evolving two populations—one involving Lagrange multipliers and other involving decision variables—to find the dual solution. On 11 test problems taken from the optimization literature, we demonstrate the efficacy of CEDO algorithm by comparing it with a couple of nested smooth and nonsmooth algorithms and a couple of previously suggested coevolutionary algorithms. The performance of CEDO algorithm is also compared with two classical methods involving nonsmooth (bundle) optimization methods. As a by-product, we analyze the test problems to find their associated duality gap and classify them into three categories having zero, finite or infinite duality gaps. The development of a coevolutionary approach, revealing the presence or absence of duality gap in a number of commonly-used test problems, and efficacy of the proposed coevolutionary algorithm compared to usual nested smooth and nonsmooth algorithms and other existing coevolutionary approaches remain as the hallmark of the current study.  相似文献   

13.
In this paper, we present an original method to solve convex bilevel programming problems in an optimistic approach. Both upper and lower level objective functions are convex and the feasible region is a polyhedron. The enumeration sequential linear programming algorithm uses primal and dual monotonicity properties of the primal and dual lower level objective functions and constraints within an enumeration frame work. New optimality conditions are given, expressed in terms of tightness of the constraints of lower level problem. These optimality conditions are used at each step of our algorithm to compute an improving rational solution within some indexes of lower level primal-dual variables and monotonicity networks as well. Some preliminary computational results are reported.  相似文献   

14.
本文提出具有线性等式约束多目标规划问题的一个降维算法.当目标函数全是二次或线性但至少有一个二次型时,用线性加权法转化原问题为单目标二次规划,再用降维方法转化为求解一个线性方程组.若目标函数非上述情形,首先用线性加权法将原问题转化为具有线性等式约束的非线性规划,然后,对这一非线性规划的目标函数二次逼近,构成线性等式约束二次规划序列,用降维法求解,直到满足精度要求为止.  相似文献   

15.
In this paper, LCP is converted to an equivalent nonsmooth nonlinear equation system H(x,y) = 0 by using the famous NCP function-Fischer-Burmeister function. Note that some equations in H(x, y) = 0 are nonsmooth and nonlinear hence difficult to solve while the others are linear hence easy to solve. Then we further convert the nonlinear equation system H(x, y) = 0 to an optimization problem with linear equality constraints. After that we study the conditions under which the K-T points of the optimization problem are the solutions of the original LCP and propose a method to solve the optimization problem. In this algorithm, the search direction is obtained by solving a strict convex programming at each iterative point, However, our algorithm is essentially different from traditional SQP method. The global convergence of the method is proved under mild conditions. In addition, we can prove that the algorithm is convergent superlinearly under the conditions: M is P0 matrix and the limit point is a strict complementarity solution of LCP. Preliminary numerical experiments are reported with this method.  相似文献   

16.
This paper discusses a kind of optimization problem with linear complementarity constraints, and presents a sequential quadratic programming (SQP) algorithm for solving a stationary point of the problem. The algorithm is a modification of the SQP algorithm proposed by Fukushima et al. [Computational Optimization and Applications, 10 (1998), 5-34], and is based on a reformulation of complementarity condition as a system of linear equations. At each iteration, one quadratic programming and one system of equations needs to be solved, and a curve search is used to yield the step size. Under some appropriate assumptions, including the lower-level strict complementarity, but without the upper-level strict complementarity for the inequality constraints, the algorithm is proved to possess strong convergence and superlinear convergence. Some preliminary numerical results are reported.  相似文献   

17.
We consider a nonsmooth multiobjective programming problem with inequality and set constraints. By using the notion of convexificator, we extend the Abadie constraint qualification, and derive the strong Kuhn-Tucker necessary optimality conditions. Some other constraint qualifications have been generalized and their interrelations are investigated.  相似文献   

18.
一个解凸二次规划的预测-校正光滑化方法   总被引:1,自引:0,他引:1  
本文为凸二次规划问题提出一个光滑型方法,它是Engelke和Kanzow提出的解线性规划的光滑化算法的推广。其主要思想是将二次规划的最优性K-T条件写成一个非线性非光滑方程组,并利用Newton型方法来解其光滑近似。本文的方法是预测-校正方法。在较弱的条件下,证明了算法的全局收敛性和超线性收敛性。  相似文献   

19.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

20.
In this paper, we present a new extreme point algorithm to solve a mathematical program with linear complementarity constraints without requiring the upper level objective function of the problem to be concave. Furthermore, we introduce this extreme point algorithm into piecewise sequential quadratic programming (PSQP) algorithms. Numerical experiments show that the new algorithm is efficient in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号