首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Given a symmetrized Sobolev inner product of order N, the corresponding sequence of monic orthogonal polynomials {Qn} satisfies that Q2n(x)=Pn(x2), Q2n+1(x)=xRn(x2) for certain sequences of monic polynomials {Pn} and {Rn}. In this paper, we deduce the integral representation of the inner products such that {Pn} and {Rn} are the corresponding sequences of orthogonal polynomials. Moreover, we state a relation between both inner products which extends the classical result for symmetric linear functionals.  相似文献   

2.
In this paper some decompositions of Cauchy polynomials, Ferrers-Jackson polynomials and polynomials of the form x 2n + y 2n , n ∈ ℕ, are studied. These decompositions are used to generate the identities for powers of Fibonacci and Lucas numbers as well as for powers of the so called conjugate recurrence sequences. Also, some new identities for Chebyshev polynomials of the first kind are presented here.  相似文献   

3.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

4.
Let c be a linear functional defined by its moments c(xi)=ci for i=0,1,…. We proved that the nonlinear functional equations P(t)=c(P(x)P(αx+t)) and P(t)=c(P(x)P(xt)) admit polynomial solutions which are the polynomials belonging to the family of formal orthogonal polynomials with respect to a linear functional related to c. This equation relates the polynomials of the family with those of the scaled and shifted family. Other types of nonlinear functional equations whose solutions are formal orthogonal polynomials are also presented. Applications to Legendre and Chebyshev polynomials are given. Then, orthogonality with respect to a definite inner product is studied. When c is an integral functional with respect to a weight function, the preceding functional equations are nonlinear integral equations, and these results lead to new characterizations of orthogonal polynomials on the real line, on the unit circle, and, more generally, on an algebraic curve.  相似文献   

5.
A special case of the big q-Jacobi polynomials Pn(x;a,b,c;q), which corresponds to a=b=−c, is shown to satisfy a discrete orthogonality relation for imaginary values of the parameter a (outside of its commonly known domain 0<a<q−1). Since Pn(x;qα,qα,−qα;q) tend to Gegenbauer (or ultraspherical) polynomials in the limit as q→1, this family represents another q-extension of these classical polynomials, different from the continuous q-ultraspherical polynomials of Rogers. For a dual family with respect to the polynomials Pn(x;a,a,−a;q) (i.e., for dual discrete q-ultraspherical polynomials) we also find new orthogonality relations with extremal measures.  相似文献   

6.
Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.  相似文献   

7.
The paper lists a number of problems that motivate consideration of special linear combinations of polynomials, orthogonal with the weight p(x) on the interval (a,b). We study properties of the polynomials, as well as the necessary and sufficient conditions for their orthogonality. The special linear combinations of Chebyshev orthogonal polynomials of four kinds with absolutely constant coefficients hold a distinguished place in the class of such linear combinations.  相似文献   

8.
We propose a method of constructing orthogonal polynomials Pn(x) (Krall's polynomials) that are eigenfunctions of higher-order differential operators. Using this method we show that recurrence coefficients of Krall's polynomials Pn(x) are rational functions of n. Let Pn(a,b;M)(x) be polynomials obtained from the Jacobi polynomials Pn(a,b)(x) by the following procedure. We add an arbitrary concentrated mass M at the endpoint of the orthogonality interval with respect to the weight function of the ordinary Jacobi polynomials. We find necessary conditions for the parameters a,b in order for the polynomials Pn(a,b;M)(x) to obey a higher-order differential equation. The main result of the paper is the following. Let a be a positive integer and b⩾−1/2 an arbitrary real parameter. Then the polynomials Pn(a,b;M)(x) are Krall's polynomials satisfying a differential equation of order 2a+4.  相似文献   

9.
In this article, we study the bivariate Fibonacci and Lucas p-polynomials (p ? 0 is integer) from which, specifying x, y and p, bivariate Fibonacci and Lucas polynomials, bivariate Pell and Pell-Lucas polynomials, Jacobsthal and Jacobsthal-Lucas polynomials, Fibonacci and Lucas p-polynomials, Fibonacci and Lucas p-numbers, Pell and Pell-Lucas p-numbers and Chebyshev polynomials of the first and second kind, are obtained. Afterwards, we obtain some properties of the bivariate Fibonacci and Lucas p-polynomials.  相似文献   

10.
Laguerre-Sobolev polynomials are orthogonal with respect to an inner product of the form , where α>−1, λ?0, and , the linear space of polynomials with real coefficients. If dμ(x)=xαe−xdx, the corresponding sequence of monic orthogonal polynomials {Qn(α,λ)(x)} has been studied by Marcellán et al. (J. Comput. Appl. Math. 71 (1996) 245-265), while if dμ(x)=δ(x)dx the sequence of monic orthogonal polynomials {Ln(α)(x;λ)} was introduced by Koekoek and Meijer (SIAM J. Math. Anal. 24 (1993) 768-782). For each of these two families of Laguerre-Sobolev polynomials, here we give the explicit expression of the connection coefficients in their expansion as a series of standard Laguerre polynomials. The inverse connection problem of expanding Laguerre polynomials in series of Laguerre-Sobolev polynomials, and the connection problem relating two families of Laguerre-Sobolev polynomials with different parameters, are also considered.  相似文献   

11.
Intersective polynomials are polynomials in Z[x] having roots every modulus. For example, P1(n)=n2 and P2(n)=n2−1 are intersective polynomials, but P3(n)=n2+1 is not. The purpose of this note is to deduce, using results of Green and Tao (2006) [8] and Lucier (2006) [16], that for any intersective polynomial h, inside any subset of positive relative density of the primes, we can find distinct primes p1,p2 such that p1p2=h(n) for some integer n. Such a conclusion also holds in the Chen primes (where by a Chen prime we mean a prime number p such that p+2 is the product of at most 2 primes).  相似文献   

12.
A sequence is said to be k-automatic if the nth term of this sequence is generated by a finite state machine with n in base k as input. Regular sequences were first defined by Allouche and Shallit as a generalization of automatic sequences. Given a prime p and a polynomial f(x)∈Qp[x], we consider the sequence , where vp is the p-adic valuation. We show that this sequence is p-regular if and only if f(x) factors into a product of polynomials, one of which has no roots in Zp, the other which factors into linear polynomials over Q. This answers a question of Allouche and Shallit.  相似文献   

13.
Hongmei Liu 《Discrete Mathematics》2009,309(10):3346-5728
In this paper, by the generating function method, we establish various identities concerning the (higher order) Bernoulli polynomials, the (higher order) Euler polynomials, the Genocchi polynomials and the degenerate higher order Bernoulli polynomials. Particularly, some of these identities are also related to the power sums and alternate power sums. It can be found that, many well known results, especially the multiplication theorems, and some symmetric identities demonstrated recently, are special cases of our results.  相似文献   

14.
In this paper we study the zero-sets of continuous n-homogeneous polynomials on complex nonseparable Banach spaces. We prove that the zero-set of any complex n-homogeneous polynomial P is a subspace if, and only if, there is a functional ? such that P(x)=? (x)n for every x. We give sufficient conditions on the Banach space to ensure that every continuous 2-homogeneous polynomial is identically zero on a nonseparable subspace. Also, we prove that, in the 2-homogeneous case, one of the following three properties holds: P ?1(0) is a subspace; P ?1(0) is the union of two different subspaces; and P ?1(0) is the union of infinitely many different subspaces.  相似文献   

15.
Carlitz has introduced an interesting q-analogue of Frobenius-Euler numbers in [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987-1000; L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954) 332-350]. He has indicated a corresponding Stadudt-Clausen theorem and also some interesting congruence properties of the q-Euler numbers. A recent author's study of more general q-Euler and Genocchi numbers can be found in previous publication [T. Kim, L.C. Jang, H.K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001) 139-141]. In this paper we give a new construction of q-Euler numbers, which are different from Carlitz's q-extension and author's q-extension in previous publication (see [T. Kim, L.C. Jang, H.K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001) 139-141]). By using our q-extension of Euler numbers, we can also consider a new q-extension of Genocchi numbers and obtain some interesting relations between q-extension of Euler numbers and q-extension of Genocchi numbers.  相似文献   

16.
17.
In this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of q-Krall polynomials are considered in detail.  相似文献   

18.
The paper deals with orthogonal polynomials in the case where the orthogonality condition is related to semiclassical functionals. The polynomials that we discuss are a generalization of Jacobi polynomials and Jacobi-type polynomials. More precisely, we study some algebraic properties as well as the asymptotic behaviour of polynomials orthogonal with respect to the linear functional U U=J ,+A 1(x–1)+B 1(x+1)–A 2(x–1)–B 2(x+1), where J , is the Jacobi linear functional, i.e. J ,,p›=–1 1 p(x)(1–x)(1+x)dx,,>–1, pP, and P is the linear space of polynomials with complex coefficients. The asymptotic properties are analyzed in (–1,1) (inner asymptotics) and C[–1,1] (outer asymptotics) with respect to the behaviour of Jacobi polynomials. In a second step, we use the above results in order to obtain the location of zeros of such orthogonal polynomials. Notice that the linear functional U is a generalization of one studied by T. H. Koornwinder when A 2=B 2=0. From the point of view of rational approximation, the corresponding Markov function is a perturbation of the Jacobi–Markov function by a rational function with two double poles at ±1. The denominators of the [n–1/n] Padé approximants are our orthogonal polynomials.  相似文献   

19.
We consider a new generalization of Hermite polynomials to the case of several variables. Our construction is based on an analysis of the generalized eigenvalue problem for the operator Ax+DAx+D, acting on a linear space of polynomials of N variables, where A   is an endomorphism of the Euclidean space RNRN and D is a second order differential operator. Our main results describe a basis for the space of Hermite–Jordan polynomials.  相似文献   

20.
Applying Baxter's method of the Q-operator to the set of Sekiguchi's commuting partial differential operators we show that Jack polynomials Pλ(1/g)1, …, χn) …, χn) are eigenfunctions of a one-parameter family of integral operators Qz. The operators Qz are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Qzk we construct an integral operator Sn factorising Jack polynomials into products of hypergeometric polynomials of one variable. The operator Sn admits a factorisation described in terms of restricted Jack polynomials Pλ(1/g) (x1, …, xk, 1, … 1). Using the operator Qz for z = 0 we give a simple derivation of a previously known integral representation for Jack polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号