首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value.Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization.This paper describes a new exact method, based on Benders decomposition, for the robust spanning tree problem with interval data. Computational results highlight the efficiency of the new method, which is shown to be very fast on all the benchmarks considered, and in particular on those that were harder to solve for the methods previously known.  相似文献   

2.
本在无向网络中,建立了带有边集限制的最均匀支撑树问题的网络模型.中首先解决最均匀支撑树问题,并给出求无向网络中最均匀支撑树的多项式时间算法;然后,给出了求无向网络中带有边集限制的最小树多项式时间算法;最后,在已解决的两个问题的基础上解决了带有边集限制的最均匀支撑树问题.  相似文献   

3.
We consider a P model version of stochastic spanning tree problems with random edge costs. Parameters of underling probability distribution of edge costs are unknown and so they are estimated by a confidence region from statistical data. The problem is first transformed into a deterministic equivalent problem with a minimax type objective function and a confidence region of means and variances, since we assume normal distributions with respect to random edge costs. Our model reflects the situation that the maximum possible damage due to an unknown parameter should be minimized. We show the problem can be reduced to the deterministic equivalent problem of another stochastic spanning tree problem, which is already investigated by us. Thus, we can find an optimal spanning tree of the original problem very efficiently by this reduction.  相似文献   

4.
提出了一种新的能反映决策者满意度的随机变量序关系,并据此研究了随机不等式的确定性等价类,方法被称为满意度方法.最后将其应用于带凹性生产成本运输问题的求解中,并将方法与常用的机会约束方法进行比较,说明满意度法不仅合理可行,而且当决策者对约束条件的要求越高时,它所得最优值越优于机会约束法所得最优值.  相似文献   

5.
The robust spanning tree problem is a variation, motivated by telecommunications applications, of the classic minimum spanning tree problem. In the robust spanning tree problem edge costs lie in an interval instead of having a fixed value.Interval numbers model uncertainty about the exact cost values. A robust spanning tree is a spanning tree whose total cost minimizes the maximum deviation from the optimal spanning tree over all realizations of the edge costs. This robustness concept is formalized in mathematical terms and is used to drive optimization.In this paper a branch and bound algorithm for the robust spanning tree problem is proposed. The method embeds the extension of some results previously presented in the literature and some new elements, such as a new lower bound and some new reduction rules, all based on the exploitation of some peculiarities of the branching strategy adopted.Computational results obtained by the algorithm are presented. The technique we propose is up to 210 faster than methods recently appeared in the literature.  相似文献   

6.
We consider the problem of finding a minimum spanning and Steiner tree for a set of n points in the plane where the orientations of edge segments are restricted to λ uniformly distributed orientations, λ=2,3,4,… , and where the coordinate system can be rotated around the origin by an arbitrary angle. The most important cases with applications in VLSI design arise when λ=2 or λ=4. In the former, so-called rectilinear case, the edge segments have to be parallel to one of the coordinate axes, and in the latter, so-called octilinear case, the edge segments have to be parallel to one of the coordinate axes or to one of the lines making 45° with the coordinate axes (so-called diagonals). As the coordinate system is rotated—while the points remain stationary—the length and indeed the topology of the minimum spanning or Steiner tree changes. We suggest a straightforward polynomial-time algorithm to solve the rotational minimum spanning tree problem. We also give a simple algorithm to solve the rectilinear Steiner tree problem in the rotational setting, and a finite time algorithm for the general Steiner tree problem with λ uniform orientations. Finally, we provide some computational results indicating the average savings for different values of n and λ both for spanning and Steiner trees.  相似文献   

7.
In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratio where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.  相似文献   

8.
This paper addresses the robust spanning tree problem with interval data, i.e. the case of classical minimum spanning tree problem when edge weights are not fixed but take their values from some intervals associated with edges. The problem consists of finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from an optimal solution under the worst case realization of interval weights. As it was proven in Kouvelis and Yu (Robust Discrete Optimization and Its Applications, Kluwer Academic, Norwell, 1997), the problem is NP-hard, therefore it is of great interest to tackle it with some metaheuristic approach, namely simulated annealing, in order to calculate an approximate solution for large scale instances efficiently. We describe theoretical aspects and present the results of computational experiments. To the best of our knowledge, this is the first attempt to develop a metaheuristic approach for solving the robust spanning tree problem.  相似文献   

9.
Given an undirected graph with nonnegative edge lengths and nonnegative vertex weights, the routing requirement of a pair of vertices is assumed to be the product of their weights. The routing cost for a pair of vertices on a given spanning tree is defined as the length of the path between them multiplied by their routing requirement. The optimal product-requirement communication spanning tree is the spanning tree with minimum total routing cost summed over all pairs of vertices. This problem arises in network design and computational biology. For the special case that all vertex weights are identical, it has been shown that the problem is NP-hard and that there is a polynomial time approximation scheme for it. In this paper we show that the generalized problem also admits a polynomial time approximation scheme.  相似文献   

10.
A symbolic language is developed around the primitive notions of edge and spanning tree, with each spanning tree being interpreted as a binary relation on edges. A sense is considered in which the properties expressible in this language are precisely the self-dual properties of graph theory.  相似文献   

11.
The minimum spanning tree (MST) problem is a well-known optimization problem of major significance in operational research. In the multi-criteria MST (mc-MST) problem, the scalar edge weights of the MST problem are replaced by vectors, and the aim is to find the complete set of Pareto optimal minimum-weight spanning trees. This problem is NP-hard and so approximate methods must be used if one is to tackle it efficiently. In an article previously published in this journal, a genetic algorithm (GA) was put forward for the mc-MST. To evaluate the GA, the solution sets generated by it were compared with solution sets from a proposed (exponential time) algorithm for enumerating all Pareto optimal spanning trees. However, the proposed enumeration algorithm that was used is not correct for two reasons: (1) It does not guarantee that all Pareto optimal minimum-weight spanning trees are returned. (2) It does not guarantee that those trees that are returned are Pareto optimal. In this short paper we prove these two theorems.  相似文献   

12.
The maximum or minimum spanning tree problem is a classical combinatorial optimization problem. In this paper, we consider the partial inverse maximum spanning tree problem in which the weight function can only be decreased. Given a graph, an acyclic edge set, and an edge weight function, the goal of this problem is to decrease weights as little as possible such that there exists with respect to function containing the given edge set. If the given edge set has at least two edges, we show that this problem is APX-Hard. If the given edge set contains only one edge, we present a polynomial time algorithm.  相似文献   

13.
Some inverse optimization problems under the Hamming distance   总被引:4,自引:0,他引:4  
Given a feasible solution to a particular combinatorial optimization problem defined on a graph and a cost vector defined on the arcs of the graph, the corresponding inverse problem is to disturb the cost vector such that the feasible solution becomes optimal. The aim is to optimize the difference between the initial cost vector and the disturbed one. This difference can be measured in several ways. We consider the Hamming distance measuring in how many components two vectors are different, where weights are associated to the components. General algorithms for the bottleneck or minimax criterion are described and (after modification) applied to the inverse minimum spanning tree problem, the inverse shortest path tree problem and the linear assignment problem.  相似文献   

14.
Minimum edge ranking spanning trees of split graphs   总被引:1,自引:0,他引:1  
Given a graph G, the minimum edge ranking spanning tree problem (MERST) is to find a spanning tree of G whose edge ranking is minimum. However, this problem is known to be NP-hard for general graphs. In this paper, we show that the problem MERST has a polynomial time algorithm for split graphs, which have useful applications in practice. The result is also significant in the sense that this is a first non-trivial graph class for which the problem MERST is found to be polynomially solvable. We also show that the problem MERST for threshold graphs can be solved in linear time, where threshold graphs are known to be split.  相似文献   

15.
This paper deals with a minimum spanning tree problem where each edge cost includes uncertainty and importance measure. In risk management to avoid adverse impacts derived from uncertainty, a d-confidence interval for the total cost derived from robustness is introduced. Then, by maximizing the considerable region as well as minimizing the cost-importance ratio, a biobjective minimum spanning tree problem is proposed. Furthermore, in order to satisfy the objects of the decision maker and to solve the proposed model in mathematical programming, fuzzy goals for the objects are introduced as satisfaction functions, and an exact solution algorithm is developed using interactive decision making and deterministic equivalent transformations. Numerical examples are provided to compare our proposed model with some previous models.  相似文献   

16.
The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given topology. The first systematically inserts Steiner points between edges of the minimal spanning tree meeting at angles less than 120 degrees, performing a local optimization at the end. The second begins by finding the Steiner tree for three of the fixed points. Then, at each iteration, it introduces a new fixed point to the tree, connecting it to each possible edge by inserting a Steiner point, and minimizes over all connections, performing a local optimization for each. We present a variety of test cases that demonstrate the strengths and weaknesses of both algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The minimal spanning tree problem has been well studied and until now many efficient algorithms such as [5,6] have been proposed. This paper generalizes it toward a stochastic version, i.e., considers a stochastic spanning tree problem in which edge costs are not constant but random variables and its objective is to find an optimal spanning tree satisfying a certain chance constraint. This problem may be considered as a discrete version of P-model first introduced by Kataoka [4].First it is transformed into its deterministic equivalent problem P. Then, an auxiliary problem P(R) with a positive parameter R is defined. After clarifying close relations between P and P(R), this paper proposes a polynomial order algorithm fully utilizing P(R). Finally, more improvement of the algorithm and applicability of this type algorithm to other discrete stochastic programming problems are discussed.  相似文献   

18.
In a graph in which each edge has two weights, the max + sum spanning tree problem seeks a spanning tree that has the minimum value for the combined total of the maximum of one of the edge weights and the sum of the other weights among all the spanning trees in the graph. Exploiting an efficient data structure, an O(m log n) algorithm is presented for solving this problem. This improves the currently known bound of O(mn).  相似文献   

19.
In this paper the minimum spanning tree problem in a given connected graph is considered. It is assumed that the edge costs are not precisely known and they are specified as fuzzy intervals. Possibility theory is applied to characterize the optimality of edges of the graph and to choose a spanning tree under fuzzy costs.  相似文献   

20.
Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics have been proposed and analyzed. In a currently ongoing project, we investigate an intelligent optimization algorithm to solve the problem. It is obtained by the basic Variable Neighbourhood Search heuristic with the integration of other complements from machine learning, statistics and experimental algorithmics, in order to produce high-quality performance and to completely automate the resulting optimization strategy. Computational experiments show that the proposed metaheuristic has high-quality performance for the MLST problem and it is able to obtain optimal or near-optimal solutions in short computational running time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号