首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
This paper presents a new method for solving the vibration of arbitrarily shaped membranes with elastical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.  相似文献   

2.
The non-linear dynamic behavior of a novel model of a single-story asymmetric structure under earthquake and harmonic excitations and near two-to-one internal resonance is investigated. The non-linearities of the proposed model, ignored in conventional linear models, are caused by non-linear inertial coupling between translational and torsional degrees of freedom defined in the directions of a non-inertial rotational system of reference, attached to the center of mass of the floor. The multiple scales method is used to achieve approximately linear solutions for the originally non-linear equations near a two-to-one ratio of external and internal resonant conditions. The suitability of the proposed model is justified by the similarity between the simulated response of the non-linear model and the experimental results. The numerical results of time history and frequency domain analyses illustrate the difference between the non-linear and linear models. Energy transfer from a lower natural frequency excited mode to a higher one due to non-linear interaction in the novel model is shown. The effects of amplitude, frequency detuning parameters, uncoupled lateral and torsional frequencies, and damping ratio on the responses are inspected and some non-linear phenomena such as hysteresis, jumping, hardening, and softening are observed.  相似文献   

3.
Geometrically non-linear forced vibrations of a shallow circular cylindrical panel with a complex shape, clamped at the edges and subjected to a radial harmonic excitation in the spectral neighborhood of the fundamental mode, are investigated. Both Donnell and the Sanders–Koiter non-linear shell theories retaining in-plane inertia are used to calculate the elastic strain energy. The discrete model of the non-linear vibrations is build using the meshfree technique based on classic approximate functions and the R-function theory, which allows for constructing the sequences of admissible functions that satisfy given boundary conditions in domains with complex geometries; Chebyshev orthogonal polynomials are used to expand shell displacements. A two-step approach is implemented in order to solve the problem: first a linear analysis is conducted to identify natural frequencies and corresponding natural modes to be used in the second step as a basis for expanding the non-linear displacements. Lagrange approach is applied to obtain a system of ordinary differential equations on both steps. Different multimodal expansions, having from 15 up to 35 generalized coordinates associated with natural modes, are used to study the convergence of the solution. The pseudo-arclength continuation method and bifurcation analysis are applied to study non-linear equations of motion. Numerical responses are obtained in the spectral neighborhood of the lowest natural frequency; results are compared to those available in the literature. Internal resonances are also detected and discussed.  相似文献   

4.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions.  相似文献   

5.
This paper compares the dynamic coupled behavior of floating structure and mooring system in time domain using two numerical methods for the mooring lines such as the linear spring method and the nonlinear FEM (Finite Element Method). In the linear spring method, hydrodynamic coefficients and forces on the floating body are calculated using BEM (Boundary Element Method) and the time domain equation is derived using convolution. The coupled solution is obtained by simply adding the pre-determined spring constants of the mooring lines into the floating body equation. In FEM, the minimum energy principle is applied to formulate the nonlinear dynamic equation of the mooring system with a discrete numerical model. The ground contact model and Morison formula for drag forces are also included in the formulation. The coupled solution is obtained by iteratively solving the floating body equation and the FEM equation of the mooring system. Two example structures such as weathervane ship and semi-submersible structure are analyzed using linear spring and nonlinear FEM methods and the difference of those two methods are presented. By analyzing the cases with or without surge-pitch or sway-roll coupling stiffness of mooring lines in the linear spring method, the effect of coupling stiffness of the mooring system is also discussed.  相似文献   

6.
The longitudinal motions and vertical accelerations of a floating torus as well as wave motion inside the torus are studied by model tests in regular deep-water waves. Comparisons are made with linear and partly with second-order potential-flow theory for the smallest examined experimental wave height-to-wave length ratio 1/120. Reasonable agreement is obtained, in particular for the linear problem. The importance of 3D flow, hydroelasticity and strong hydrodynamic frequency dependency is documented. Experimental precision errors and bias errors, for instance, due to tank-wall interference are discussed. Numerical errors due to viscous effects are found to be secondary. Experiments show that the third and fourth harmonic accelerations of the torus matter and cannot be explained by a perturbation method with the wave steepness as a small parameter.  相似文献   

7.
We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical systems can be viewed as a one-dimensional model of materials with non-linear inclusions. The presented analytical and numerical results show that effective material properties can be altered by establishing HF standing waves in the non-linear regions of the chain. In addition, it is demonstrated how true static displacements and forces can be created by using HF excitation with structures having asymmetric displacement-force characteristics.  相似文献   

8.
The paper examines the equilibrium stability problem for a simple class of elastic space trusses in the shape of a regular pyramid. Joints located at the vertices of the base polygon are fixed while the joint at the apex is subjected to a proportionally increasing load acting in either the vertical direction, in the horizontal plane, or along a generic oblique direction. Exact closed-form solutions are derived for each load condition under the common hypotheses of linear material law, small or moderate axial deformation in bars and large nodal displacements. Despite their seeming simplicity, these mechanical systems exhibit a wide variety of post-critical responses, not exhausted by the classical snapping and bifurcation phenomena. In addition to regular primary and secondary branches, the equilibrium paths may include neutral branches, namely branches entirely composed of bifurcation or limit points. Besides their immediate theoretical interest, these branches are particularly difficult to handle by the standard numerical procedures of non-linear analysis, so the given solutions may represent severe benchmark tests.  相似文献   

9.
In this paper the non-linear closed-form static computational model of the pre-stressed suspended biconvex and biconcave cable trusses with unmovable, movable, or elastic yielding supports subjected to vertical distributed load applied over the entire span and over a part (over the half) of the span is presented. The paper is an extension of the previously published work of authors [S. Kmet, Z. Kokorudova, Non-linear analytical solution for cable trusses, Journal of Engineering Mechanics ASCE 132 (1) (2006) 119-123]. Irvine's linearized forms of the deflection and the cable equations are modified because the effects of the non-linear truss behaviour needed to be incorporated in them. The concrete forms of the system of two non-linear cubic cable equations due to the load type are derived and presented. From a solution of a non-linear vertical equilibrium equation for a loaded cable truss, the additional vertical deflection is determined. The computational analytical model serves to determine the response, i.e. horizontal components of cable forces and deflection of the geometrically non-linear biconvex or biconcave cable truss to the applied loading, considering effects of elastic deformations, temperature changes and elastic supports. The application of the derived non-linear analytical model is illustrated by numerical examples. Resulting responses of the symmetric and asymmetric cable trusses with various geometries (shallow and deep profiles) obtained by the present non-linear closed-form solution are compared with those obtained by Irvine's linear solution and those by the non-linear finite element method. The conditions for the use of the linear and non-linear approach are briefly specified.  相似文献   

10.
The coupling between the equations governing the free‐surface flows, the six degrees of freedom non‐linear rigid body dynamics, the linear elasticity equations for mesh‐moving and the cables has resulted in a fluid‐structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed‐mesh and moving‐mesh techniques. Here, the free‐surface flow simulations are based on the Navier–Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free‐surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian–Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non‐linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Ibrahim  R. A.  Hijawi  M. 《Nonlinear dynamics》1998,16(3):259-292
The purpose of this study is to understand the main differences between the deterministic and random response characteristics of an inextensible cantilever beam (with a tip mass) in the neighborhood of combination parametric resonance. The excitation is applied in the plane of largest rigidity such that the bending and torsion modes are cross-coupled through the excitation. In the absence of excitation, the two modes are also coupled due to inertia nonlinearities. For sinusoidal parametric excitation, the beam experiences instability in the neighborhood of the combination parametric resonance of the summed type, i.e., when the excitation frequency is in the neighborhood of the sum of the first bending and torsion natural frequencies. The dependence of the response amplitude on the excitation level reveals three distinct regions: nearly linear behavior, jump phenomena, and energy transfer. In the absence of nonlinear coupling, the stochastic stability boundaries are obtained in terms of sample Lyapunov exponent. The response statistics are estimated using Monte Carlo simulation, and measured experimentally. The excitation center frequency is selected to be close to the sum of the bending and torsion mode frequencies. The beam is found to experience a single response, two possible responses, or non-stationary responses, depending on excitation level. Experimentally, it is possible to obtain two different responses for the same excitation level by providing a small perturbation to the beam during the test.  相似文献   

12.
A fundamental issue in turbomachinery design is the dynamical stress assessment of turbine blades. In order to reduce stress peaks in the turbine blades at engine orders corresponding to blade natural frequencies, friction dampers are employed. Blade response calculation requires the solution of a set of non-linear equations originated by the introduction of friction damping.

Such a set of non-linear equations is solved using the iterative numerical Newton–Raphson method. However, calculation of the Jacobian matrix of the system using classical numerical finite difference schemes makes frequency domain solver prohibitively expensive for structures with many contact points. Large computation time results from the evaluation of partial derivatives of the non-linear equations with respect to the displacements.

In this work a methodology to compute efficiently the Jacobian matrix of a dynamic system having wedge dampers is presented. It is exact and completely analytical.

The proposed methods have been successfully applied to a real intermediate pressure turbine (IPT) blade under cyclic symmetry boundary conditions with underplatform wedge dampers. Its implementation showed to be very effective, and allowed to achieve relevant time savings without loss of precision.  相似文献   


13.
In this work the fluid–structure interactions are considered by investigating a straight but slender pipe interacting with uniform water flow. Two configurations are studied, namely vertically and horizontally positioned pipes, which are modelled as an Euler–Bernoulli beam with flexural stiffness. Both pretension and length-wise mass distribution are considered. The structure is assumed to be moving only in the direction normal to flow (cross-flow motion) hence its in-line motion is neglected. The external fluid force acting on the structure is the result of the action of sectional vortex-induced drag and lift forces. Only mean drag force is considered, with time varying lift force modelled using a non-linear oscillator equation of the Van der Pol type. The obtained coupled system of non-linear partial differential equations is simplified employing Galerkin-type discretisation. The resulting ordinary differential equations are solved numerically providing multi-mode approximations of cross-flow displacement and non-dimensional lift coefficient. The comparison between the responses of vertical and horizontal structures shows that, as expected, due to a balancing between pretension and weight, in general a higher amplitude of vibration is observed for the vertical configuration than in the same location along the pipe for the horizontal configuration in the lower part of the structure. However, lower amplitudes are obtained in the upper part of the pipe. The horizontal configuration solutions are identical in symmetrical locations along the pipe due to constant pretension. The influence of the wake equation coefficients and the fluid force coefficients on the response amplitudes has been also considered together with the length of the pipe and pretension level, and the appropriate response curves are included. Finally, for the higher mode approximations it has been shown that the vibrations level at lower frequencies is predicted reasonably well by retaining only a small subset of modes.  相似文献   

14.
The present work deals with the non-linear vibration of a harmonically excited single link roller-supported flexible Cartesian manipulator with a payload. The governing equation of motion of this system is developed using extended Hamilton's principle, which is reduced to the second-order temporal differential equation of motion, by using generalized Galerkin's method. This equation of motion contains both cubic non-linearities of geometric and inertial type in addition to linear forced and non-linear parametric excitation terms. Method of multiple scales is used to solve this non-linear equation and study the stability and bifurcations of the system. Influence of amplitude of the base excitation and mass ratio on the steady state response of the system is investigated for both simple and subharmonic resonance conditions. Critical bifurcation points are determined from the fixed-point responses and periodic, quasi-periodic responses are also found for different system parameters. The results obtained using the perturbation analysis are compared with the previously published experimental work and are found to be in good agreement. This work will be useful for the designer of a flexible manipulator.  相似文献   

15.
考虑气动力和水动力的耦合研究浮式垂直轴风机系统的运动响应,将固定式垂直轴风机的气动载荷计算方法进一步推广到海上浮式垂直轴风机的气动载荷计算.考虑阻尼力、波浪力、风载荷、系泊力等,建立了浮式垂直轴风机系统的纵荡-垂荡-纵摇运动方程.考虑动态失速和浮式基础运动,基于双致动盘多流管理论,推导了风机叶片气动载荷计算公式,编制了数值计算程序.以Sandia 17 m风机为例,验证了气动载荷计算程序的正确性.最后进行了模型实验,其中模型的风机为Φ型达里厄垂直轴风机,支撑基础为桁架式Spar型浮式基础,将模型实验结果与数值计算结果进行了对比,验证了耦合计算程序.结果表明,数值计算得到的风机系统的垂荡、纵摇运动的RAO(幅值响应算子)曲线与模型实验结果吻合较好,验证了耦合程序的正确性.然而,由于数值计算与模型实验在运动自由度、阻尼、风载荷等方面存在差别,数值计算结果与模型实验结果仍有一定的差异.  相似文献   

16.
王增会  李锡夔 《力学学报》2018,50(2):284-296
本文在二阶计算均匀化框架下提出了颗粒材料损伤--愈合与塑性的多尺度表征方法. 颗粒材料结构在宏观尺度模型化为梯度Cosserat连续体,在其有限元网格的每个积分点处定义具有离散颗粒介观结构的表征元. 建立了表征元离散颗粒系统的非线性增量本构关系. 表征元周边介质作用于表征元边界颗粒的增量力与增量力偶矩以表征元边界颗粒的增量线位移与增量转动角位移、当前变形状态下表征元离散介观结构弹性刚度、以及凝聚到表征元边界颗粒的增量耗散摩擦力表示. 基于平均场理论与Hill定理,导出了基于介观力学信息的梯度Cosserat连续体增量非线性本构关系. 在等温热动力学框架下定义了表征颗粒材料各向异性损伤--愈合和塑性的损伤、愈合张量因子与综合损伤、愈合效应的净损伤张量因子和塑性应变. 此外,定义了损伤和塑性耗散能密度与愈合能密度,以定量比较材料损伤、愈合、塑性对材料失效的效应. 应变局部化数值例题结果显示了所建议的颗粒材料损伤--愈合--塑性表征方法的有效性.   相似文献   

17.
This study aims at comparing non-linear modal interactions in shallow horizontal cables with kinematically non-condensed vs. condensed modeling, under simultaneous primary external and internal resonances. Planar 1:1 or 2:1 internal resonance is considered. The governing partial-differential equations of motion of non-condensed model account for spatio-temporal modification of dynamic tension, and explicitly capture non-linear coupling of longitudinal/vertical displacements. On the contrary, in the condensed model, a single integro-differential equation is obtained by eliminating the longitudinal inertia according to a quasi-static cable stretching assumption, which entails spatially uniform dynamic tension. This model is largely considered in the literature. Based on a multi-modal discretization and a second-order multiple scales solution accounting for higher-order quadratic effects of a infinite number of modes, coupled/uncoupled dynamic responses and the associated stability are evaluated by means of frequency- and force-response diagrams. Direct numerical integrations confirm the occurrence of amplitude-steady or -modulated responses. Non-linear dynamic configurations and tensions are also examined. Depending on internal resonance condition, system elasto-geometric and control parameters, the condensed model may lead to significant quantitative and/or qualitative discrepancies, against the non-condensed model, in the evaluation of resonant dynamic responses, bifurcations and maximal/minimal stresses. Results of even shallow cables reveal meaningful drawbacks of the kinematic condensation and allow us to detect cases where the more accurate non-condensed model has to be used.  相似文献   

18.
This work investigates the linear and non-linear viscoelastic melt rheology of four grades of polycarbonate melt compounded with 3 wt% Nanocyl NC7000 multi-walled carbon nanotubes and of the matching matrix polymers. Amplitude sweeps reveal an earlier onset of non-linearity and a strain overshoot in the nanocomposites. Mastercurves are constructed from isothermal frequency sweeps using vertical and horizontal shifting. Although all nanocomposites exhibit a second plateau at ~105 Pa, the relaxation times estimated from the peak in loss tangent are not statistically different from those of pure melts estimated from cross-over frequencies: all relaxation timescales scale with molar mass in the same way, evidence that the relaxation of the polymer network is the dominant mechanism in both filled and unfilled materials. Non-linear rheology is also measured in large amplitude oscillatory shear. A comparison of the responses from frequency and amplitude sweep experiments reveals the importance of strain and temperature history on the response of such nanocomposites.  相似文献   

19.
Non-linear interactions in a hinged-hinged uniform moderately curved beam with a torsional spring at one end are investigated. The two-mode interaction is a one-to-one autoparametric resonance activated in the vicinity of veering of the frequencies of the lowest two modes and results from the non-linear stretching of the beam centerline. The excitation is a base acceleration that is involved in a primary resonance with either the first mode only or with both modes. The ensuing non-linear responses and their stability are studied by computing force- and frequency-response curves via bifurcation analysis tools. Both the sensitivity of the internal resonance detuning—the gap between the veering frequencies—and the linear modal structure are investigated by varying the rise of the beam half-sinusoidal rest configuration and the torsional spring constant. The internal and external resonance detunings are varied accordingly to construct the non-linear system response curves. The beam mixed-mode response is shown to undergo several bifurcations, including Hopf and homoclinic bifurcations, along with the phenomenon of frequency island generation and mode localization.  相似文献   

20.
The effects of uncertainties on the non-linear dynamics response remain misunderstood and most of the classical stochastic methods used in the linear case fail to deal with a non-linear problem. So we propose to take into account of uncertainties into non-linear models, by coupling the Harmonic Balance Method (HBM) and the Polynomial Chaos Expansion (PCE). The proposed method called the Stochastic Harmonic Balance Method (Stochastic-HBM) is based on a new formulation of the non-linear dynamic problem in which not only the approximated non-linear responses but also the non-linear forces and the excitation pulsation are considered as stochastic parameters. Expansions on the PCE basis are performed by passing via an Alternate Frequency Time method with Probabilistic Collocation (AFTPC) for estimating the stochastic non-linear forces in the stochastic domain and the frequency domain. In the present paper, the Stochastic Harmonic Balance Method (Stochastic-HBM) that is applied to a flexible non-linear rotor system, with random parameters modeled as random fields, is presented. The Stochastic-HBM combined with an Alternate Frequency-Time method with Probabilistic Collocation (AFTPC) allows us to solve dynamical problems with non-regular non-linearities in presence of uncertainties. In this study, the procedure is developed for the estimation of stochastic non-linear responses of the rotor system with different regular and non-regular non-linearities. The finite element rotor system is composed of a shaft with two disks and two flexible bearing supports where the non-linearities are due to a radial clearance or a cubic stiffness. A numerical analysis is performed to analyze the effect of uncertainties on the non-linear behavior of this rotor system by using the Stochastic-HBM. Furthermore, the results are compared with those obtained by applying a classical Monte-Carlo simulation to demonstrate the efficiency of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号