首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
(S)-3-羟基-γ-丁内酯开环制得手性3,4-二羟基丁酸甲酯(2);对2的伯羟基进行对甲苯磺酰化、仲羟基进行苄基保护得4-对甲苯磺酰氧基-3-苄氧基丁酸甲酯(5);5在氨甲醇作用下合环、脱苄基保护合成了(S)-4-羟基吡咯烷-2-酮,总收率26%,其结构经1HNMR和HR-MS确认,比旋光值与文献值相符。  相似文献   

2.
以2,4,5-三氟苯乙酸为起始原料,经氯化和酰化反应得2-氰基-3-羟基-4-(2,4,5-三氟苯基)丁-2-烯酸乙酯(2); 2经水解脱羧合成了3-氧代-4-(2,4,5-三氟苯基)丁腈,总收率61.5%,纯度97.6%,其结构经1H NMR和MS(ESI)确证。  相似文献   

3.
王国娟  张锴  何锡文  张玉奎 《色谱》2013,31(6):514-517
采用液相色谱-质谱联用技术结合生物信息学分析手段,研究Hela细胞组蛋白H3赖氨酸(Lysine (K))K27和K36位点带有甲基化和二甲基化修饰的多肽鉴定,通过二级质谱碎片解析和二级碎片丰度分析,对组蛋白H3赖氨酸K27和K36上甲基化和二甲基化修饰进行了鉴定和分析。  相似文献   

4.
田姗姗  刘冉冉  钱晓龙  郭晓静  张锴 《色谱》2021,39(10):1094-1101
组蛋白翻译后修饰(HPTMs)参与基因转录调控,其异常与肿瘤等重大疾病的发生发展密切相关。石蜡包埋组织是当前疾病研究的重要样本资源,对肿瘤机制和标志物研究具有重要意义。目前基于质谱的蛋白质组学技术已成为HPTMs分析的有力工具,而针对福尔马林固定石蜡包埋(FFPE)组织样品的HPTMs分析还十分有限。该研究发展了一种基于高效液相色谱-串联质谱的FFPE组织样本HPTMs分离分析新方法。通过研究并优化组蛋白的提取策略,建立了FFPE组织样本脱蜡水化处理、蛋白质提取与聚丙烯酰胺凝胶电泳分离相结合的组蛋白提取和分离方法。通过研究FFPE切片数量、组蛋白化学衍生化方法等对组蛋白鉴定的影响,确定了组蛋白处理的具体步骤。通过HPLC分离结合非依赖性采集模式的质谱分析,鉴定了组蛋白修饰的类型、位点和丰度。最后,将优化的实验方法应用于FFPE临床样本的HPTMs分析,鉴定了2例人乳腺浸润性癌和癌旁正常组织的HPTMs图谱,均获得了100种以上的不同组蛋白修饰形式的多肽。定量分析了他们的差异性水平,通过主成分降维分析,发现浸润性癌和癌旁正常组织之间组蛋白修饰丰度存在明显的差异,且差异性具有一定的规律,特别是涉及转录调控的组蛋白修饰与乳腺癌的预后和治疗靶点具有相关性,进而探讨了乳腺癌中异常HPTMs的生物学意义。该研究对临床石蜡样本中组蛋白修饰的分离分析以及肿瘤表观遗传标志物的检测进行了有益的探索。  相似文献   

5.
陈英  张锴  何锡文  张玉奎 《化学进展》2010,22(4):713-719
组蛋白是真核细胞中构成染色质内核小体的主要元件,其翻译后修饰蕴藏着组蛋白密码,是表观遗传学的重要内容,影响染色质的结构和功能,进而调控基因表达。组蛋白翻译后修饰形式的鉴定是揭示组蛋白密码的关键,目前质谱技术已经成为分析组蛋白及其翻译后修饰的重要工具。本文综述了组蛋白翻译后修饰鉴定方法的新进展,介绍了基于质谱技术“bottom up”和“top down”的组蛋白分析策略,及CID、ECD和ETD等鉴定组蛋白修饰位点的质谱碎片裂解技术,并结合当前研究进展,评述了质谱技术在组蛋白翻译后修饰谱的鉴定、组蛋白各种变体的测定、以及在生理过程中组蛋白修饰丰度动态变化的定量分析等方面应用的新进展。  相似文献   

6.
报道了两种生物质谱技术ESI-MS和MALDI-MS在鉴定乙酰化修饰蛋白BSA-ac中的应用研究结果. 乙酰化修饰蛋白通过特征碎裂峰m/z 126.1或MS/MS质谱图中相差一个赖氨酸的相邻b或y离子之间170 Da分子量的差异确证赖氨酸乙酰化修饰, 并且后者提供具体修饰位点信息. 研究提示ESI-MS和MALDI-MS两种质谱技术均可用于鉴定实际复杂样品中的乙酰化蛋白, 且在乙酰化蛋白的鉴定中各有其优点.  相似文献   

7.
近年来多种天然蛋白质中赖氨酸翻译后修饰被逐渐发现。这些翻译后修饰在蛋白质组中广泛存在,对染色体结构和基因转录表达功能具有重要的调控作用。然而,获得足量的具有特定翻译后修饰的蛋白质并非易事,发展制备方法对于后续表观遗传学研究极为重要。讨论了利用非天然氨基酸引入的手段制备含有这些新型赖氨酸翻译后修饰的蛋白。  相似文献   

8.
对DL-赖氨酸-β-环糊精/碳纳米管修饰金电极的制备与应用进行了研究,建立了一种新的测定DL-赖氨酸的电化学分析方法。用循环伏安法研究了该修饰电极的选择性和灵敏度以及DL-赖氨酸在修饰电极上的氧化还原特性,结果表明该修饰电极对DL-赖氨酸具有显著的催化还原和选择作用。在pH=5.6的磷酸盐缓冲溶液中,还原峰电流与DL-赖氨酸浓度在5~100mg/L范围内呈良好的线性关系,最低检出限为0.1mg/L。方法操作简便,可用于药剂中DL-赖氨酸含量的测定。  相似文献   

9.
本文研究了不同反应条件下3-羟基-5-甲基异噁唑(1)与3-甲基-2-对氯苯基丁酰氯(2a)的反应,提出了区域选择性合成O-和N-酰化产物的方法。在三乙胺存在下,乙腈为溶剂,1和2a~2e反应得到含量为88~96%的O-酰化产物3a~3e;而若将1转化为相应的异噁唑硅醚4,再与2a~2i反应,则得到含量为86~97%的N-酰化产物5a~5i。试验表明,在DMAP催化下,3a和5a可发生O-/N-酰基转移反应。  相似文献   

10.
(2R,4S)-N-叔丁酰基-4-氨基-2-四氢吡咯甲酸甲酯的合成   总被引:1,自引:0,他引:1  
以(2R,4S)-4-羟基-2-四氢吡咯甲酸为起始原料,经甲酰化,酰化引入叔丁氧羰基,手性反应,甲磺酰化,叠氮化及三苯基膦还原等7步反应合成了(2R,4S)-N-叔丁酰基-4-氨基-2-四氢吡咯甲酸甲酯(总收率29%),其结构经1H NMR和LC-MS表征.  相似文献   

11.
To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8+ T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established.  相似文献   

12.
Electrophilic complexes of iron and chromium which have been reported to react with proteins in solution have been reacted with hen-egg white lysozyme (HEWL) in both the solution and crystal phases under similar pH and buffer conditions. This work was carried out with a view to developing novel side-chain selective heavy metal derivatives for protein X-ray crystallographic studies. Reaction of HEWL with a tricarbonyldienyliron cation (1) in aqueous solution led to modification of the sole histidine residue with concurrent reversible modification of other protein residues. Reaction of (1) with crystalline HEWL showed no covalent binding and only a build up of a hydrolysis product in the water channels of the crystal was observed. Reactions with a series of tricarbonylarylchromium pyrylium salts (2) led to the formation of stable covalent HEWL derivatives in solution. Chromatographic and IR spectroscopic studies showed that binding took place specifically at the epsilon-amino group of lysine residues to give a series of mono- and di-substituted products. When crystals of HEWL were soaked with the chromium reagents covalent binding to some of the lysine residues was also observed. In contrast, HEWL crystals which had their lysine side chains disabled did not bind any of the chromium reagents.  相似文献   

13.
14.
钟卉菲  黄嫣嫣  金钰龙  赵睿 《色谱》2021,39(1):26-33
蛋白质泛素化是真核生物最普遍、最复杂的翻译后修饰方式之一,在细胞的信号转导、生长、发育、代谢等生命过程中发挥着重要作用。泛素化过程的失调则与神经退行性疾病、炎症反应、癌症等重大疾病的发生发展密切相关。分析和研究蛋白质泛素化的结构与功能,可望为认识生命、探索疾病调控内在规律和发现新的诊断策略提供重要信息。生命体系的高度复杂性,泛素化修饰位点、结构类型的多变和多样性,时空动态变化等特点给蛋白质泛素化分析研究带来了巨大的挑战。亲和分离以其高选择性成为泛素化蛋白质结构与功能研究的有力工具。免疫亲和分离法基于抗原-抗体相互作用,是最为经典的分离分析方法,已广泛应用于泛素化蛋白质或肽段的富集分离。源于天然泛素受体的泛素结合结构域(ubiquitin binding domains, UBDs)可与泛素或多聚泛素链相互作用。UBDs和基于此发展起来的串联泛素结合实体(tandem ubiquitin-binding entities, TUBEs)已成为蛋白质泛素化功能研究的热门识别分子。各种多肽类化合物的发展也为蛋白质泛素化的结构和功能解析提供新工具。此外,多种亲和识别配基的联合使用,在蛋白质泛素化修饰的高特异性、高灵敏度分析中展现了独特的优势,为认识生命体内的泛素化修饰提供了重要保障。该文对亲和分离方法在蛋白质泛素化修饰分析中的应用及进展进行了综述。  相似文献   

15.
The Gram-positive bacterium Staphylococcus aureus(S.aureus)is a wide spread common opportunistic pathogen that causes a wide variety of infectious diseases,from benign skin infections to life-threatening diseases such as the methicillin-resistant Staphylococcus aureus(MRSA)infection.Although emerging evidence suggests that lysine acetylation may play critical roles in bacterial physiology,the atlas of acetylome in S.aureus has not been studied.To comprehensively profile protein lysine acetylation in S.aureus,we used an integrated approach that combined immune affinity peptide enrichment using anti-lysine acetylation antibody,high-pH HPLC fractionation,and HPLC/mass spectrometry analysis.This study led to the identification of 1361 non-redundant acetylation sites on 412 proteins found in a search of S.aureus protein database extracted from the Swiss-Prot database.We further performed bioinformatic analysis to characterize this modification,including gene ontology annotation,protein-protein interaction,and domain analysis of the acetylation sites.We found that the acetylated proteins were enriched in multiple biological pathways,such as ribosomal function and energy metabolism.Our data provides a rich source for functional studies of lysine acetylation in S.aureus.  相似文献   

16.
Many furan-containing compounds are known to be toxic and/or carcinogenic. Metabolic activation of toxic furans to cis-enediones (cis-enedials or γ-ketoenals) is generally considered as the initial step towards the processes of their toxicities. Sequential modification of key proteins by the electrophilic reactive intermediates is suggested to be an important mechanism of the toxic actions. In the present study, we developed a novel and simple analytical platform to detect protein modification resulting from metabolic activation of model compound 2,5-dimethylfuran (DMF). 4-Bromobenzylamine and 4-bromobenzylmercaptan were employed to trap protein adductions at cysteine and lysine residues, respectively. The resulting protein samples were proteolytically digested by chymotrypsin and Pronase E, followed by LC–MS/MS analysis. Modifications of cysteine and lysine residues of proteins were observed in microsomal incubations and animals after exposure to DMF. In conclusion, the approach established has been proven highly selective and reliable. This advance allows us not only to detect the protein adductions but also to define the structural identities of amino acid residues modified. This technique provides a unique platform to assess protein modifications arising from metabolic activation of potentially harmful furan-containing compounds. Hepatic protein adductions were found to be proportional to the hepatotoxicity of DMF.  相似文献   

17.
The chemical modification of amino acids plays an important role in the modulation of proteins or peptides and has useful applications in the activation and stabilization of enzymes, chemical biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective modification of amino acids such as lysine and arginine via the insertion of respective chemical moieties as citraconic anhydride and phenyl glyoxal is important for achieving desired application objectives and has been extensively reported, the extent and chemoselectivity of the chemical modification of specific amino acids using specific chemical agents (blocking or modifying agents) has yet to be sufficiently clarified owing to a lack of suitable assay methodologies. In this study, we examined the utility of a fluorogenic assay method, based on a fluorogenic tripeptide substrate (FP-AA1-AA2-AA3) and the proteolytic enzyme trypsin, in determinations of the extent and chemoselectivity of the chemical modification of lysine or arginine. As substrates, we used two fluorogenic tripeptide probes, MeRho-Lys-Gly-Leu(Ac) (lysine-specific substrate) and MeRho-Arg-Gly-Leu(Ac) (arginine-specific substrate), which were designed, synthesized, and evaluated for chemoselective modification of specific amino acids (lysine and arginine) using the fluorogenic assay. The results are summarized in terms of half-maximal inhibitory concentrations (IC50) for the extent of modification and ratios of IC50 values (IC50arginine/IC50lysine and IC50lysine/IC50arginine) as a measure of the chemoselectivity of chemical modification for amino acids lysine and arginine. This novel fluorogenic assay was found to be rapid, precise, and reproducible for determinations of the extent and chemoselectivity of chemical modification.  相似文献   

18.
The reactions of two model mutagenic and carcinogenic alkylating agents, N-methyl-N-nitrosourea (MNU) and methyl methanesulfonate (MMS), with proteins and deoxynucleosides in vitro, were investigated. The protein work used an approach involving trypsin digestion and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). This technique permitted identification of the specific location of protein adduction by both MNU and MMS with commercial apomyoglobin and human hemoglobin, under physiological conditions. MNU treatment resulted in predominantly carbamoylation adducts on the proteins, but in contrast only methylated protein adducts were found following treatment with MMS. Further analyses, using TurboSequest, and the Scoring Algorithm for Spectral Analysis (SALSA), revealed that MNU carbamoylation was specific for modification of either the N-terminal valine or the free amino group in lysine residues of apomyglobin and human hemoglobin. However, MMS methylation modified the N-terminal valine and histidine residues of the proteins. Despite their clear differences in protein modifications, MNU and MMS formed qualitatively the same methylated deoxynucleoside adduct profiles with all four deoxynucleosides in vitro under physiological conditions. In light of their different biological potencies, where MMS is considered a 'super clastogen' while MNU is a 'super mutagen', these differences in reaction products with proteins vs. deoxynucleosides may indicate that these two model alkylating agents work via different mechanisms to produce their mutagenic and carcinogenic effects.  相似文献   

19.
Human serum albumin (HSA) was subjected to oxidative stress and the locations of the resulting protein carbonyls were determined using mass spectrometry in conjunction with a hydrazide labeling scheme. To model oxidative stress, HSA samples were subjected to metal-catalyzed oxidation (MCO) conditions or treated with hypochlorous acid (HOCl). Oxidation led to the conversion of lysine residues to 2-aminoadipic semi-aldehyde residues, which were subsequently labeled with biotin hydrazide. Analysis of the tryptic peptides from the samples indicates that the oxidations are highly selective. Under MCO conditions, only two of the 59 lysine residues appeared to be modified (Lys-97 and Lys-186). With HOCl, five different lysine modification sites were identified (Lys-130, Lys-257, Lys-438, Lys-499, and Lys-598). These results strongly suggest that the preferred site of modification is dependent on the nature of the oxidant and that the process relies on specific structural motifs in the protein to direct the oxidation. The high selectivity seen here provides insights into the factors that in vivo drive the selective carbonylation of specific proteins in systems under oxidative stress.  相似文献   

20.
Here, we introduce isatoic anhydride as a sensitive and commodious fluorescent prelabel for detection of proteins in one‐dimensional polyacrylamide gels. High reactivity of isatoic anhydride with nucleophiles in mild alkaline environments makes it an appropriate tag for labeling of biomolecules. In this study, we show that preelectrophoresis labeling of proteins with isatoic anhydride for few minutes at room temperature allows detection of 2–4 ng of standard proteins, BSA and lysozyme, per band. Proteins were successfully labeled in the presence of a wide range of common biological reagents and in crude cell extract. The labeled proteins have the same electrophoretic migration in comparison to unlabeled proteins; however the application of saturation labeling method results in slight band broadening. Compatibility of the method with downstream processes was assessed by tryptic digestion of labeled proteins and study of peptide mixture using gel electrophoresis which revealed partial digestion of labeled proteins due to lysine modification. The present procedure is sensitive, rapid, and inexpensive and is a promising alternative for current protein staining procedures, where downstream processes are not desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号