首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have measured the absorption and luminescence spectra of trivalent lanthanide ions (Pr3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+) in the visible and near-IR wavelength ranges in a POCl3-SnCl4 inorganic solvent. In terms of the Judd-Ofelt model, the oscillator strengths of absorption bands, the probabilities of radiative transitions, the luminescence branching coefficients, the lifetimes of excited states, and the luminescence quantum yields have been calculated. Possibilities of creating new laser media have been evaluated. A conclusion is drawn regarding the symmetry of the environment of trivalent lanthanide ions in the POCl3-SnCl4 solvent.  相似文献   

2.
Short-range order and local atomic configuration in yttrium-aluminosilicate glasses doped with gadolinium were studied by infrared (IR) spectroscopy, 27Al magic-angle-spinning nuclear magnetic resonance (MAS-NMR) and Gd3+ electron spin resonance (EPR) on as-prepared and heat-treated samples.A small amount of yttrium was replaced by gadolinium in the host glass because Y3+ and Gd3+ cations are quite similar and gadolinium ions can be used as structural sensor in electron paramagnetic resonance measurements. The results evidence weak changes in the structure of as-prepared glasses with respect to the coordination of aluminium atoms produced by gadolinium doping (0.2 and 0.5 mol%). New IR bands recorded from heat-treated samples are associated with stretching modes of hexacoordinated aluminium in AlO6 octahedra. The effect of the heat treatment on aluminium environment is estimated by analysing the relative intensity of the component lines of simulated 27Al MAS-NMR spectra. High-coordinated AlOn species were identified in all samples. EPR results evidence the increase of the number of gadolinium sites with weak crystal field as effect of the structural relaxation.  相似文献   

3.
The Pearson IV function was used to fit the asymmetric solid-state 27Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the 27Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6–9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases.  相似文献   

4.
In this paper we report the modified solid state synthesis of Ce3+ activated Sr6B5AlO15, Ca6B5AlO15 Ba6B5AlO15 and mixed host aluminoborate phosphors. The prepared phosphors were characterized by photoluminescence technique. The PL excitation spectra showed the excitation peaks ranging from 300 to 400 nm and emission spectra are observed in UV-blue region of spectrum and it varied for different hosts. This kind of emission is due to 4f65d → 4f7 transition of Ce3+ ion. Further PLE and PL emission spectra for various compositions Ca5Sr1B5AlO15, Ca4Sr2B5AlO15, Ca3Sr3B5AlO15, Ca2Sr4B5AlO15, CaSr5B5AlO15 are also taken which shows Ce3+ emission at 428 nm, 425 nm, 432 nm, 427 nm, 438 nm respectively. The calculated 2FJ (J = 7/2, 5/2) energy gap of Ce3+ in all hosts have been calculated and obtained values for Sr6B5AlO15, Ba6B5AlO15 phosphors are 1888 cm−1 and 1330 cm−1 respectively. PL emission spectra of mixed host aluminoborates have shown slight variations in positions of emission peaks.  相似文献   

5.
Paramagnetic Tm2+ ion centers in the KMgF3 single crystal have been studied by electron paramagnetic resonance and optical spectroscopy. The Stark level energies of the cubic Tm2+ multiplets have been established from the luminescence spectra and the crystal field parameters have been calculated. Information about the phonon spectra of KMgF3 crystals has been obtained from the electron-vibrational structure of the optical luminescence spectra.  相似文献   

6.
Abstract

We present the Raman spectrum of Tm3Al5O12 single crystal and its pressure dependence for hydrostatic pressure up to 11GPa and room temperature. Tm3Al5O12 belongs to the crystal family of rare earth garnets (Re3A12(AlO4)3, Re: Gd, Tb, Dy, Er,…), which crystallize in the body-centered cubic lattice and contains eight molecular units in the conventional unit cell, Group theory predicts 25 Raman active modes for these compounds, while experimentally are observed 15 modes. As crystal volume decreases all Raman peaks exhibit pressure coefficients varying from 0.7 to 5.6cm?1/ GPa. A large part of the vibrational spectra of these compounds could be explained taking into account the vibrational properties of molecular subunits, namely AlO4.  相似文献   

7.
The YAlO3: Tm3+ single crystal has been studied on a wide-band EPR spectrometer. The EPR spectra of Tm3+ ions in the frequency range of 90–160 GHz have been detected for the first time. It has been confirmed that thulium ions substitute the position of Y3+ in the crystal lattice. The detected spectra have been described with the use of a spin Hamiltonian with the effective spin S = 1/2. A comparative analysis of the orientation of the magnetic axes of the Tm3+ paramagnetic center with earlier data on other rare-earth ions has been performed.  相似文献   

8.
The local chemical environment of the trivalent lanthanide cations in Nb2O5 nanopowders doped with 1 mol% of Eu3+ and Er3+, prepared via a Pechini approach, has been studied by means of EXAFS at the Ln-K edge. It can be demonstrated that the lanthanide ions enter the Nb2O5 structure as substitutional defects with respect to Nb, giving rise to a very large amount of disorder: both Eu3+ and Er3+ ions substitute Nb in the nine-fold coordinated site, with clustering of oxygen vacancies around the substitutional defects. Valence bond calculations have been used to validate the Ln-O distances obtained by the EXAFS fitting. The Er3+-doped nanocrystalline Nb2O5 sample shows efficient luminescence in the near infrared region around 1.5 μm. The emission and excitation spectra are affected by significant inhomogeneous broadening, in agreement with the presence of strong disorder around the dopant ions in nanosized Nb2O5.  相似文献   

9.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

10.
Experimental evidence that nuclear magnetic resonance (NMR) can detect structural changes of piezoelectric La3Ga5SiO14 induced by dilute paramagnetic ions is presented. Gd3+ and Eu3+ cations have been incorporated into La3Ga5SiO14 monocrystals. As expected, the line-width of the tetrahedral 29Si magic angle spinning (MAS) NMR spectra as well as the inverse of the T2 relaxation time of 71Ga increases with the concentration of the paramagnetic ions. A surprising result is shown by 71Ga multiple quantum (MQ) MAS NMR spectrum, which changes with the concentration of paramagnetic ions. The changes in the 71Ga MQMAS spectra can be explained by a more ordonated distribution of Ga ions inside the oxygen tetrahedra. The 71Ga MQMAS NMR spectra allow identification of the one octahedral and two tetrahedral Ga sites.  相似文献   

11.
A simple but efficient 13C MAS NMR method is presented for the determination of the location of embedded molecules such as peptides relative to biological membrane surfaces by exploiting the interaction with paramagnetic lanthanide ions. Using various aqueous Dy3+ concentrations a distance-dependent differential paramagnetic quenching of NMR lipid resonance intensities for specific carbon sites was observed, with residues at the bilayer surface quenched effectively and hydrophobic sites unaffected by Dy3+. Tested on the membrane-embedded 50 residue long M13 coat protein, 13C labeled at its Val-29 and Val-31 residues, no paramagnetic quenching was observed for the peptide resonances by Dy3+, suggesting that Val-29 and Val-31 are not in close proximity to the bilayer interface, but buried deeply inside the hydrophobic region of the lipid bilayer.  相似文献   

12.
《光谱学快报》2013,46(4-5):617-634
Abstract

The complex formation between l‐histidine (HHis) and aluminum(III) ion in water solutions was studied by UV spectrophotometric and 27‐Al NMR measurements at 298 K. UV spectra were measured on solutions in which the total concentration of histidine was from 15.0 to 50.0 mmol/dm3 and the concentration ratio of histidine to aluminum was varied from 3∶1 to 10∶1 in the pH range between 4.2 and 6.0. The spectra were taken in the wavelength interval 240–340 nm. Nonlinear least‐squares treatment of the spectrophotometric data indicates the formation of the complexes Al(HHis)3+, Al(His)2+, Al(HHis)His2+, and Al2(OH)His4+ with the overall formation constants βp,q,r: log β1,1,1=11.90±0.04, log β1,1,0=7.25±0.08, log β1,2,1=20.1±0.1, and log β2,1,1=5.92±0.12 (p, q, r are stoichiometric indices for metal, ligand, and proton, respectively). 27Al‐NMR spectra were taken on solutions with the concentration of aluminum 50 mmol/dm3 and that of histidine 250 mmol/dm3. In the pH interval 5.0–6.1, two resonances at 9.5 ppm and 12.0 ppm were assigned to Al(HHis)2+ and Al(HHis)(His)2+ (or Al(OH)(HHis)2 2+), respectively.  相似文献   

13.
In solid solutions of alkaline-and rare-earth fluorides with a fluorite structure, ions of most elements of the rare-earth (RE) row form hexameric clusters that assimilate the minor component of the solid solutions (fluorine) and build it into the cubic fluorite lattice without changing its shape. An analysis of the EPR spectra of paramagnetic RE ions (Er3+, Tm3+, Yb3+) in clusters of diamagnetic ions (Lu3+, Y3+) confirms their hexagonal structure, which was established when studying the superstructures of the compounds under study. In such a cluster, a RE ion is in a nearly tetragonal crystal field, with the parameters of this field differing radically from those of single cubic and tetragonal RE centers in crystals with a fluorite structure. In particular, this field causes high (close to limiting) values of the g factors of the ground states of the paramagnetic RE ions. Computer simulation is used to determine the atomic structure of a hexameric cluster in MF2 crystals (M = Ca, Sr, Ba). The crystal field and energy spectrum of Er3+, Tm3+, and Yb3+ ions in such clusters are calculated, and the spectroscopic parameters of the ground states of these ions are determined. The calculations confirm the earlier assumption that the unusual EPR spectra of nonstoichiometric fluorite phases are related to RE ions in hexameric clusters.  相似文献   

14.
Yb3+:Er3+:Tm3+ co-doped borosilicate glasses are prepared.Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared,which are excited by a 978-nm laser diode,are measured,and the mechanisms of energy transfer among Yb3+,Er3+ and Tm3+ ions are discussed.The results show that there is an unexpected wavelength at 900-nm emission from Yb3+ Stark splitting levels to pump Tm3+ ions and there exists an optimum pump power.The concentration of the Tm3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the Yb3+:Er3+:Tm3+ co-doped borosilicate glasses.  相似文献   

15.
Lanthanide (Ln3+) doped BaYF5 (Ln=Yb3+, Er3+, Tm3+) nanocrystals (NCs) with a mean size of approximately 10 nm are synthesized by a solvothermal method using oleic acid as a stabilizing agent at 210 °C. The size of BaYF5 NCs can be controlled by simply tuning the reaction parameters such as reaction temperature, reaction time and the molar ratio of F/Y3+. The detailed structure investigation reveals that the as-synthesized BaYF5 NCs are in the cubic structure with space group Fm3¯m instead of the reported tetragonal structure. Ln3+ cations occupy crystal lattice positions with lower point symmetry, which may lead to high upconversion efficiency under the excitation of a 980 nm diode laser. By adjusting the dopant concentrations of Yb3+, Er3+ and Tm3+, intense near-infrared, blue, yellow and white upconversion emissions are readily realized, respectively. The desirable property of the ultrasmall monodisperse NCs makes it the promising material for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedicine imaging.  相似文献   

16.
In this study, we report spectroscopic properties of Tm3+ and Ho3+ codoped tellurite glasses over a wide dopant concentration range in order to assess their potential laser performance under 790 nm diode laser excitation. The impact of Tm3+ and Ho3+ concentrations is investigated to identify specific candidates for fiber laser operation. The emission cross section is calculated and discussed, as well as the gain coefficient of this type of glasses. Energy transfer microparameters and critical ion distances are determined for 3H4, 3F4 (Tm3+), and 5I7 (Ho3+) emission levels in the framework of diffusion-limited regime and dipole–dipole interaction. We also report thermal properties of tested glasses.  相似文献   

17.
With the help of absorption and fluorescence spectra, the spectroscopic properties of Tm3+, Ho3+:YVO4 crystals have been investigated under different dopant concentrations. The absorption results show that the maximum absorption in the spectral range of currently available powerful laser diodes (LD) is at 796 nm, corresponding to the transition 3H63H4 of Tm3+ in the crystals. Upon the excitation with a LD at 808 nm, we have detected ten fluorescence bands in the spectral range spanning from visible to infrared. In visible region 4 upconversion bands have been observed centered at 475, 547, 660, and 701 nm. Discussions of the energy transfer processes suggest that cross relaxations and excited absorptions with the involvement of Tm3+ 3F4, 3H5 and Ho3+ 7I5 states are responsible for the four upconversion emissions. Comprising the relative integrated intersities of 2 μm (Ho3+: 5I75I8) and 1.8 μm (Tm3+: 3F_4→3H6) bands we have observed an efficient energy transfer from Tm3+ (3F4) to Ho3+ (5I7). Examination of the ratios of the intensity of 2 μm band to that of 1.8 μm band as a function of the ratios of Tm3+ concentration (cTm) to Ho3+ concentration (cHo) indicates that small concentration ratios (cTm/cHo) lead to high efficient energy transfers of Tm3+(3F4)→Ho3+(5I7).  相似文献   

18.
An evolutionary optimization process involving combination chemistry was employed in an attempt to develop Y3Al5O12 (YAG). The combination chemistry process utilized here consisted the doping of the YAG host with appropriate amounts of red (R), green (G), and blue (B) dopants in a single layer, for use in tricolor white light. The doped YAG was acieved by means of the non-hydrolytic sol-gel route. Four samples were prepared, three of which were mono-doped samples containing 1.0% of a certain lanthanide (Eu3+, Tb3+, or Tm3+) ion, while the fourth contained the three ions. The samples were characterized by X-ray diffractometry and photoluminescence. The diffraction pattern of the mono-doped samples synthered at 800 °C for 16 h displayed peaks corresponding to the Y3Al5O12 (YAG) phase, while the sample doped with the three ions revealed the presence of a mixture of Y3Al5O12 (YAG) and Y4Al2O9 (YAM) phases. The emission spectra of the three mono-doped YAG samples displayed the typical bands of the blue, green, and red emission of the corresponding lanthanide ions. As for the sample doped with the three lanthanide ions; it simultaneously emitted R, G and B lights. The green emission (546 nm) was more intense and narrow in relation to the red and blue emissions, which may be due to differences in the size of the three incorporated ions.  相似文献   

19.
在室温下,测量了Er:Tm:NaY(WO4)2晶体的吸收光谱、激发光谱、发射光谱以及上转换发光,并运用J-O理论对测量的结果进行了计算,得出了Er:Tm:NaY(WO4)2晶体的强度参数.报道了Tm,Er离子间特殊的能量传递和相关上转换,解释了离子间的能级跃迁过程.同时,对于Er增强Tm离子近红外发光的特性也作了充分研究. 关键词: 4)2晶体')" href="#">Er:Tm:NaY(WO4)2晶体 吸收光谱 发射光谱 激发光谱 上转换  相似文献   

20.
In view of previous studies of tetrafluoroborate solutions1, it appeared interesting to continue further investigations on the interactions of fluorocomplexes with different cations, in general, and of the MF6 2- fluoro complexes, in particular. In this communication, the high resolution 19F NMR data are given for the aqueous and water-acetone solutions of silicon, germanium, tin and titanium hexafluorocomplexes, containing paramagnetic (Co2+, Ni2+, Cu2+, Cr3+) and diamagnetic (Be2+, Mg2+, Zn2+, NH4 +) cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号