首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kwac and Cho [J. Chem. Phys. 119, 2247 (2003)] have recently developed a combined electronic structure/molecular dynamics approach to vibrational spectroscopy in liquids. The method involves fitting ab initio vibrational frequencies for a solute in a cluster of solvent molecules to a linear combination of the electrostatic potentials on the solute atoms due to the charges on the solvent molecules. These authors applied their method to the N-methylacetamide-D/D(2)O system. We (S. A. Corcelli, C. P. Lawrence, and J. L. Skinner, [J. Chem. Phys. 120, 8107 (2004)]) have recently explored a closely related method, where instead of the electrostatic potential, the solute vibrational frequencies are fit to the components of the electric fields on the solute atoms due to the solvent molecules. We applied our method to the HOD/D(2)O and HOD/H(2)O systems. In order to make a direct comparison of these two approaches, in this paper we apply their method to the water system, and our method to the N-methylacetamide system. For the water system we find that the electric field method is superior to the potential approach, as judged by comparison with experiments for the absorption line shape. For the N-methylacetamide system the two methods are comparable.  相似文献   

2.
Molecules in inhomogeneous liquid environments, such as air/liquid, liquid/liquid, solid/liquid interfaces interact with each other specifically, and sometimes form characteristic structures and emerge unique properties. Here, we introduce two newly developed spectroscopic techniques, the total-internal-reflection ultrafast transient lens method (TIR-UTL) and second harmonic generation-coherent vibrational spectroscopy (SHG-CVS), to investigate the characteristic behaviors of molecules in such inhomogeneous environments. TIR-UTL probes the refractive-index change with sub-picosecond resolution and provides information on ultrafast changes in the population, density, and thermal properties, such as temperature increase and energy transfer from the solute molecules to the surrounding solvent molecules. On the other hand, SHG-CVS probes nonlinear susceptibility changes at the interfacial areas, and is expected to provide spectroscopic information on the low-frequency vibrational modes that reflect the corrective motion of the molecules in such an inhomogeneous environment. These new approaches are based on pump-probe techniques utilizing (ultra) short laser pulses. They are expected to provide further information on inhomogeneous environments from the viewpoints of solute-solvent interactions, changes in the molecular orientation, and the corrective motion of molecules at liquid interfaces.  相似文献   

3.
4.
Weak pi hydrogen-bonded solute/solvent complexes are studied with ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature-dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute/solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen-bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory.  相似文献   

5.
Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.  相似文献   

6.
The vibrational frequency of the amide I transition of peptides is known to be sensitive to the strength of its hydrogen bonding interactions. In an effort to account for interactions with hydrogen bonding solvents in terms of electrostatics, we study the vibrational dynamics of the amide I coordinate of N-methylacetamide in prototypical polar solvents: D2O, CDCl3, and DMSO-d6. These three solvents have varying hydrogen bonding strengths, and provide three distinct solvent environments for the amide group. The frequency-frequency correlation function, the orientational correlation function, and the vibrational relaxation rate of the amide I vibration in each solvent are retrieved by using three-pulse vibrational photon echoes, two-dimensional infrared spectroscopy, and pump-probe spectroscopy. Direct comparisons are made to molecular dynamics simulations. We find good quantitative agreement between the experimentally retrieved and simulated correlation functions over all time scales when the solute-solvent interactions are determined from the electrostatic potential between the solvent and the atomic sites of the amide group.  相似文献   

7.
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanced solvent bands exhibit similar peaks to those of the solute bands in the wavenumber region of 21,700-25,000 cm(-1) (10,850-12,500 cm(-1) in the hyper-Raman exciting wavenumber), where the solute all-trans-β-carotene shows a strong absorption assigned to the 1A(g) → 1B(u) transition. This fact indicates that the solvent hyper-Raman bands gain their intensities through resonances with the electronic states of the solute. The observed excitation profiles are quantitatively analyzed and are successfully accounted for by an extended vibronic theory of resonance hyper-Raman scattering that incorporates the vibronic coupling within the excited electronic manifold of all-trans-β-carotene through the vibrational motions of cyclohexane. It is shown that the major resonance arises from the B-term (vibronic) coupling between the first excited vibrational level (v = 1) of the 1B(u) state and the ground vibrational level (v = 0) of a nearby A(g) state through ungerade vibrational modes of both the solute and the solvent molecules. The inversion symmetry of the solute all-trans-β-carotene is preserved, suggesting the weak perturbative nature of the solute-solvent interaction in the molecular near-field effect. The present study introduces a new concept, "intermolecular vibronic coupling," which may provide an experimentally accessible∕theoretically tractable model for understanding weak solute-solvent interactions in liquid.  相似文献   

8.
In this paper, we report on our investigation into the vibrational dynamics of the antisymmetric stretching modes of SCN(-) and N(3)(-) in several polar solvents. We used an infrared (IR) pump-probe method to study orientational relaxation processes. In two aprotic solvents (N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)), the anisotropy decay shows a bimodal feature, whereas in other solvents the anisotropy decay can be fitted well by a single exponential function. We consider that the relative contribution of fast-decaying components is smaller in the other solvents than in DMF and DMSO. We discuss the possible origins of the different anisotropy decay behavior in different solvents. From the three-pulse IR photon echo measurements for SCN(-) and N(3)(-), we found that the time-correlation functions (TCFs) of vibrational frequency fluctuations decay on two different time scales, one of which is less than 100 fs and the other is approximately 3-6 ps. In aprotic solvents, the fast-decaying components of the TCFs on a <100 fs time scale play an important role in the vibrational frequency fluctuation, although the contribution of collective solvent reorganization in aprotic solvents was clearly observed to have small amplitudes. On the other hand, we found that the amplitude of components that decay in a few picoseconds and/or the constant offset of the TCF in protic solvents is relatively large compared with that in aprotic solvents. With the formation and dissociation of hydrogen bonds between ion solute and solvent molecules, the spectra of different solvated species are exchanged with each other and merged into one band. We considered that this exchange may be an origin of slow-decaying components of the TCFs and that the decay of the TCFs corresponds to the time scales of the exchange for protic solvents such as formamide. The mechanism of vibrational frequency fluctuations for the antisymmetric stretching modes of SCN(-) and N(3)(-) is discussed in terms of the difference between protic and aprotic solvents.  相似文献   

9.
Vibrational energy relaxation (VER) dynamics of a diatomic solute in ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF(6) (-)) are studied via equilibrium and nonequilibrium molecular dynamics simulations. The time scale for VER is found to decrease markedly with the increasing solute dipole moment, consonant with many previous studies in polar solvents. A detailed analysis of nonequilibrium results shows that for a dipolar solute, dissipation of an excess solute vibrational energy occurs almost exclusively via the Lennard-Jones interactions between the solute and solvent, while an oscillatory energy exchange between the two is mainly controlled by their electrostatic interactions. Regardless of the anharmonicity of the solute vibrational potential, VER becomes accelerated as the initial vibrational energy increases. This is attributed primarily to the enhancement in variations of the solvent force on the solute bond, induced by large-amplitude solute vibrations. One interesting finding is that if a time variable scaled with the initial excitation energy is employed, dissipation dynamics of the excess vibrational energy of the dipolar solute tend to show a universal behavior irrespective of its initial vibrational state. Comparison with water and acetonitrile shows that overall characteristics of VER in EMI(+)PF(6) (-) are similar to those in acetonitrile, while relaxation in water is much faster than the two. It is also found that the Landau-Teller theory predictions for VER time scale obtained via equilibrium simulations of the solvent force autocorrelation function are in reasonable agreement with the nonequilibrium results.  相似文献   

10.
胡凡  郑学仿  李钦宁  李慎敏 《化学学报》2008,66(21):2321-2328
利用分子动力学模拟方法, 考察了受限于圆柱形纳米孔道内I2/Ar溶液的振动传能及扩散动力学. 计算得到了溶质振动弛豫时间T1、溶剂轴向扩散系数Dz随孔道半径变化的规律. 结果表明: T1随着孔道半径的增大而减小; 而Dz随着孔道半径的增大而增大; 与预期的一致, 随着孔道半径的增大, 孔道的限制作用逐渐减小, T1与Dz趋近于相应的非受限溶液体相值. 此外, 通过考察溶质、溶剂与孔道的相互作用, 在原子、分子层次上揭示了限制作用对传能与传质影响的机制.  相似文献   

11.
The harmonic model is the most popular approximation for estimating the “configurational” entropy of a solute in molecular mechanics/Poisson‐Boltzmann solvent accessible surface area (MM/PBSA)‐type binding free energy calculations. Here, we investigate the influence of the solvent representation in the harmonic model by comparing estimates of changes in the vibrational entropies for 30 trypsin/ligand complexes on ligand binding. Second derivatives of Amber generalized Born (GB) solvation models are available in the nucleic acid builder code. They allow one to use these models for the calculation of vibrational entropies instead of using a simpler solvation model based on a distance‐dependent dielectric (DDD) constant. Estimates of changes in the vibrational entropies obtained with a DDD model are systematically and significantly larger, by on average, 6 kcal mol?1 (at T = 300 K), than estimates obtained with a GB model and so are more favorable for complex formation. The difference becomes larger the more the vibrational entropy contribution disfavors complex formation, that is, the larger the ligand is (for the complexes considered here). A structural decomposition of the estimates into per‐residue contributions reveals polar interactions between the ligand and the surrounding protein, in particular involving charged nitrogens, as a main source of the differences. Snapshots minimized with the DDD model showed a structural deviation from snapshots minimized in explicit water that is larger by, on average, 0.5 Å RMSD compared to snapshots that were minimized with GBHCT. As experimental vibrational entropies of biomacromolecules are elusive, there is no direct way to establish a solvent model's superiority. Thus, we can only recommend using the GB harmonic model for vibrational entropy calculations based on the reasoning that smaller structural deviations should point to the implicit solvent model that closer approximates the energy landscape of the solute in explicit solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Mixed quantum-classical molecular dynamics method has been applied to vibrational relaxation of a hydrophilic model NO in supercritical water at various densities along an isotherm above the critical temperature. The relaxation rate was determined based on Fermi's golden rule at each state point and showed an inverse S-shaped curve as a function of bulk density. The hydration number was also calculated as a function of bulk density based on the calculated radial distribution function, which showed a good correlation with the relaxation rate. Change of the survival probability of the solute vibrational state was analyzed as a function of time together with the trajectory of the solvent water and the interaction with it. We will show that the solvent molecule resides near the solute molecule for a while and the solvent contributes to the relaxation by the random-noiselike Coulombic interaction only when it stays near the solute. After the solvent leaves the solute, it shows no contribution to the relaxation. The relaxation mechanism for this system is significantly different from the collisional one found for a nonpolar solute in nonpolar solvent in Paper I. Then, the relaxation rate is determined, on average, by the hydration number or local density of the solvent. Thus, the density dependence of the relaxation rate for the polar solute in supercritical water is apparently similar to that found for the nonpolar solute in nonpolar solvent, although the molecular process is quite different from each other.  相似文献   

13.
We present a combined experimental and computational investigation of the vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of [1,1'-binaphthalene]-2,2'-diol. First, the sensitive dependence of the experimental VA and VCD spectra on the solvent is demonstrated by comparing the experimental spectra measured in CH(2)Cl(2), CD(3)CN, and DMSO-d(6) solvents. Then, by comparing calculations performed for the isolated solute molecule to calculations performed for molecular complexes formed between solute and solvent molecules, we identify three main types of perturbations that affect the shape of the VA and VCD spectra when going from one solvent to another. These sources of perturbations are (1) perturbation of the Boltzmann populations, (2) perturbation of the electronic structure, and (3) perturbation of the normal modes.  相似文献   

14.
Our previously developed approaches for integrating quantum mechanical molecular orbital methods with microscopic solvent models are refined and examined. These approaches consider the nonlinear solute–solvent coupling in a self-consistent way by incorporating the potential from the solvent dipoles in the solute Hamiltonian, while considering the polarization of the solvent by the potential from the solute charges. The solvent models used include the simplified Langevin Dipoles (LD) model and the much more expensive surface constrained All Atom Solvent (SCAAS) model, which is combined with a free energy pertubation (FEP) approach. Both methods are effectively integrated with the quantum mechanical AMPAC package and can be easily combined with other quantum mechanical programs. The advantages of the present approaches and their earlier versions over macroscopic reaction field models and supermolecular approaches are considered. A LD/MNDO study of solvated organic ions demonstrates that this model can yield reliable solvation energies, provided the quantum mechanical charges are scaled to have similar magnitudes to those obtained by high level ab initio methods. The incorporation of a field-dependent hydrophobic term in the LD free energy makes the present approach capable of evaluating the free energy of transfer of polar molecules from non polar solvents to aqueous solutions. The reliability of the LD approach is examined not only by evaluating a rather standard set of solvation energies of organic ions and polar molecules, but also by considering the stringent test case of sterically hindered hydrophobic ions. In this case, we compare the LD/MNDO solvation energies to the more rigorous FEP/SCAAS/MNDO solvation energies. Both methods are found to give similar results even in this challenging test case. The FEP/SCAAS/AMPAC method is incorporated into the current version of the program ENZYMIX. This option allows one to study chemical reactions in enzymes and in solutions using the MNDO and AM1 approximations. A special procedure that uses the EVB method as a reference potential for SCF MO calculations should help in improving the reliability of such studies.  相似文献   

15.
In studying ultrafast electron transfer from a dye molecule to a nanosized semiconductor particle, pump-probe experiments are commonly used. In this system the electron transfer (ET) rate is faster than vibrational relaxation so that the ET rate should be described by a single-level rate constant and the probing signal (often in the form of time-resolved spectra) contains the contribution from the dynamics of both population and coherence (i.e., wave packet). In this paper, we shall present the theoretical treatments for femtosecond time-resolved pump-probe experiment and the dynamics of population and coherence by the density matrix method, and the calculation of single-level ET rate constant involved in a pump-probe experiment. As an application, we show the theoretical results using parameters extracted from experiments on a specific dye/semiconductor system.  相似文献   

16.
Polarizable continuum models (PCMs) are a widely used family of implicit solvent models based on reaction-field theory and boundary-element discretization of the solute/continuum interface. An often overlooked aspect of these theories is that discretization of the interface typically does not afford a continuous potential energy surface for the solute. In addition, we show that discretization can lead to numerical singularities and violations of exact variational conditions. To fix these problems, we introduce the switching/Gaussian (SWIG) method, a discretization scheme that overcomes several longstanding problems with PCMs. Our approach generalizes a procedure introduced by York and Karplus [J. Phys. Chem. A 103, 11060 (1999)], extending it beyond the conductor-like screening model. Comparison to other purportedly smooth PCM implementations reveals certain artifacts in these alternative approaches, which are avoided using the SWIG methodology. The versatility of our approach is demonstrated via geometry optimizations, vibrational frequency calculations, and molecular dynamics simulations, for solutes described using quantum mechanics and molecular mechanics.  相似文献   

17.
18.
Raman spectral features associated with the reorganization of solvent molecules around a solute are obtained using multivariate curve resolution. Spectra collected from solutions of variable concentration are resolved into unperturbed and perturbed components assuming only that the spectra and concentrations of each component are non-negative (with no peak-fitting or constraints on the shapes of either the perturbed or unperturbed spectral features). The capabilities of the method are demonstrated using solutions of acetonitrile, acetone, and pyridine in water as well as acetonitrile and cyclohexane in 1,2-dichloroethane (DCE). The results reveal vibrational spectra of solvation-shell molecules that are perturbed by each solute. The perturbed solvent-shell water molecules are found to have different OH stretch bands (of higher frequency and narrower width than bulk water), and the gauche-trans equilibrium of solvent-shell DCE molecules are perturbed in opposite directions by the polar and nonpolar solutes.  相似文献   

19.
Studies of vibrational energy flow in various polar and nonpolar molecules that follows the ultrafast excitation of the CH and OH stretch fundamentals, modeled using semiclassical methods, are reviewed. Relaxation rates are calculated using Landau-Teller theory and a time-dependent method, both of which consider a quantum mechanical solute molecule coupled to a classical bath of solvent molecules. A wide range of decay rates are observed, ranging from 1 ps for neat methanol to 50 ps for neat bromoform. In order to understand the flow rates, it is argued that an understanding of the subtle mixing between the solute eigenstates is needed and that solute anharmonicities are critical to facilitating condensed phase vibrational relaxation. The solvent-assisted shifts of the solute vibrational energy levels are seen to play a critical role of enhancing or decreasing lifetimes.  相似文献   

20.
利用平衡态分子动力学方法(EMD)模拟了纳米尺寸限制球壳内I2在Ar溶液中的振动能量转移. 计算并讨论了I2振动能量弛豫时间T1随球壳半径、溶剂密度的变化规律. 通过分子间相互作用分析, 在原子、分子水平上, 揭示了随着球壳半径的减小, T1呈逐渐增大趋势的原因. 结果表明, 球壳的几何限制效应和表面作用对受限溶液密度分布的影响较大, 从而导致溶质振动弛豫的显著变化. 此外, 非限制体系模拟显示, 非平衡态分子动力学(NEMD)方法可以得到与平衡态分子动力学方法较一致的振动能量弛豫时间T1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号