首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar M  Kumar R  Bhalla V 《Organic letters》2011,13(3):366-369
A thiacalix[4]arene based chemosensor 3 bearing two pyrene groups has been synthesized which demonstrates ratiometric sensing with Ag(+) and fluorescence quenching with Fe(3+) ions in mixed aqueous media. The 'in situ' prepared Ag(+) and Fe(3+) complexes showed high selectivity toward cysteine. The molecular switching between three chemical inputs (Ag(+), Fe(3+), cysteine) results in various molecular logic gates which have been integrated sequentially to generate a sequential information processing device.  相似文献   

2.
The fluorescent chemosensors 3, 5 and 7 based on thiacalix[4]arene bearing naphthyl groups have been designed and synthesized. The optical chemosensor 3 based on a thiacalix[4]arene of cone conformation behaves as "turn-on" optical chemosensor for Fe(3+) and F(-) ions. However, chemosensors 5 and 7 based on a thiacalix[4]arene of 1,3-alternate conformation demonstrate "turn-on" optical behaviour for Hg(2+), F(-) ions (with receptor 5 as turn-on for K(+) ions also) and "turn-off" behaviour for Fe(3+) ions. The simultaneous presence of Fe(3+) and Hg(2+) or K(+) or F(-) ions results in formulation of reversible "on-off" switches. Various molecular logic gates developed in response to molecular switching between these chemical inputs have been integrated into sequential logic circuits with memory function in a feedback loop which mimics "set-reset" molecular level information processing device.  相似文献   

3.
Potentiometric sensor based on glassy carbon electrode covered with polyaniline and neutral carrier, e.g. thiacalix[4]arene containing pyridine fragments in the substituents in the lower rim has been developed and applied for determination of Ag+ ions in the range from 1.0 × 10−2 to 5.0 × 10−7 M with the response time of 12 s. The presence of thiacalixarene in the surface layer improves the reversibility and selectivity of the signal towards transient metal ions. The potentiometric selectivity coefficients were determined for various measurement conditions. As shown, the pH control and the use of NaF as a masking agent fully eliminate the interfering effect of Hg2+ and Fe3+ ions, respectively. The reaction of Ag+ with thiacalixarene was proved by the investigation of the extraction of picrate complexes of transient metals in the organic phase. The potentiometric sensor developed was successfully used for the potentiometric determination of silver sulfathiazole (Argosulfan™).  相似文献   

4.
A simple fluorescent sensor 1 has been developed for the determination of Fe(III) in 100% aqueous solution at pH 7.0. The sensor comprises a novel aminobisulfonate receptor joined to a naphthalene fluorophore via a methylene spacer in the fluorophore-spacer-receptor format of photoinduced electron transfer (PET) based sensors. The fluorescence emission of the sensor was quenched upon addition of Fe(III) ions, most likely due to electron/energy transfer between Fe(III) and the excited naphthalene. The sensor displayed good selectivity for Fe(III) over other physiologically relevant metal ions and can estimate Fe(III) concentration between 16 and 63 μM. Stern Volmer analysis showed the binding stoichiometry to be 1:1 (host-guest) with a binding constant, calculated using the Benesi-Hilderbrand equation, of (7.6 ± 0.6) × 104 M−1.  相似文献   

5.
A thiacalix[4]arene based fluorescent chemosensor 3 in the cone conformation has been synthesized and its recognition behaviour is evaluated toward various metal ions in mixed aqueous media. The chemosensor 3 showed high selectivity towards Fe(3+) ions by fluorescence quenching of excimer emission. Further, evaluation of the 3·Fe(3+) complex prepared in situ demonstrated great promise for the detection of the Fe(3+) ion in the presence of amino acids, blood serum and bovine serum albumin (BSA) solution. The compound 3 has suitable permeability into the PC3 cells and can be utilized as a Fe(3+) selective sensor in living cells (PC3 cells).  相似文献   

6.
A new, simple, sensitive, low cost and rapid potentiometric method for direct determination of ultra trace amounts of sodium dodecyl sulfate (SDS) with a new DS(-)-selective electrode is reported. The electrode was prepared by electropolymerization of aniline in acidified DS- ion on the surface of a Pt electrode. The cyclic voltammetry (CV) was used for electropolymerization of polyaniline (PA) in the potential range of -200 to +1000 mV vs. Ag/AgCl. This sensor showed a Nernstian behavior (59.0 +/- 2.3 mV/decade) over a very wide linear range (1.0 x 10(-9)-3.0 x 10(-6) M) with a detection limit of 1.0 x 10(-9) M. The response time of the electrode was 15 s for 1.0 x 10(-7) M of analyte; the electrode can be used for 4 weeks without any major deviation. This electrode can be used in the pH range of 3.5-9.8. The selectivity of electrode to DS- over some organic, inorganic and anionic surfactants was investigated with the fixed primary ion method. The results show that the electrode is highly selective to DS- ion over other ions. The proposed electrode was applied to the determination of DS- in real samples.  相似文献   

7.
Mercury (II) ion-selective PVC membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate (EBPCA) as a novel nitrogen containing sensing material is successfully developed. The sensor exhibits good linear response of 30 mV per decade within the concentration range 10(-6)-10(-3) mol l(-1) Hg(II). The sensor shows good selectivity for mercury (II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. The EBPCA-based sensor is suitable for use with aqueous solutions of pH 2.0-4.5 and exhibits minimal interference by Ag(I) and Fe(III), which are known to interfere with other previously suggested sensors. The nature and composition of the sensing material and its mercury complex are examined using Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques. The proposed sensor is applied as a sensor for the determination of Hg(II) content in some amalgam alloys. The results show good correlation with data obtained by atomic absorption spectrometric method.  相似文献   

8.
The performance of octahydroxycalix[4]arene derivative used as a neutral carrier for silver polymeric membrane electrode was studied. The sensor gave a good Nernstian response of 58 +/- 1 mV per decade for silver ion in the activity range 3.3 x 10(-6) to 3.3 x 10(-2) M Ag+. The limit of detection reached 2.1 x 10(-6) M Ag+ and exhibited high selectivity for silver ion against the alkali, alkaline earth and transition metal ions. The sensor can be used in wide pH range from 1.5 to 6.5. The response time of the sensor is less than 20 s. The potentiometric sensor was used as the indicator electrode in the titration of Ag+ ions by sodium chloride solution.  相似文献   

9.
Amperometric biosensor (BS) has been elaborated based on the stationary mercury-film electrode (SMFE) with silver support and cellulose nitrate (CN) membrane containing immobilized single-stranded DNA (ssIDNA). The sorption isotherms and ssDNA-heavy metal binding constants have been obtained with the BS. According to these data, the chosen heavy metals form the following series of binding strength with ssIDNA: Pb(II)>Fe(III)>Cd(II). It has been found that upon the competitive adsorption, there exists practically simultaneous sorption of different ions at ssIDNA containing membrane. The method of the determination of heavy metals based on preconcentration of metal ions on the BS followed by the destruction of DNA-metal complexes with ethylenediamine tetraacetate (EDTA) and voltammogram recording has been proposed. The lower limits of detectable contents are 1.0x10(-10), 1.0x10(-9) and 1.0x10(-7) mol l(-1) for Pb(II), Cd(II) and Fe(III), respectively. Heavy metals have been assayed in natural and drinking water, milk and blood serum samples even under simultaneous presence with a selectivity factor of 1:10. The effect of matrix components has been estimated.  相似文献   

10.
The construction and performance characteristics of a novel chromate ion-selective membrane sensor are described and used for determining chromium(III) and chromium(VI) ions. The sensor is based on the use of a rhodamine-B chromate ion-associate complex as an electroactive material in a poly(vinyl chloride) membrane plasticized with o-nitrophenyloctyl ether as a solvent mediator. In a phosphate buffer solution of pH 6 - 7, the sensor displays a stable, reproducible and linear potential response over the concentration range of 1 x 10(-1) - 5 x 10(-6) mol l(-1) with an anionic Nernstian slope of 30.8 +/- 0.5 mV decade(-1) and a detection limit of 1 x 10(-6) mol l(-1) Cr(VI). High selectivity for Cr(VI) is offered over many common anions (e.g., I-, Br-, Cl-, IO4-, CN-, acetate, oxalate, citrate, sulfate, phosphate, thiosulfate, selenite, nitrate) and cations (e.g., Ag+, Ca2+, Sr2+, Co2+, Ni2+, Cu2+, Mn2+, Fe2+, Zn2+, Cd2+, Al3+, Cr3+). The sensor is used for determining Cr(VI) and/or Cr(III) ions in separate or mixed solutions after the oxidation of Cr(III) into Cr(VI) with H2O2. As low as 0.2 microg ml(-1) of chromium is determined with a precision of +/-1.2%. The chromium contents of some wastewater samples were accurately assessed, and the results agreed fairly well with data obtained by atomic absorption spectrometry.  相似文献   

11.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

12.
Four 20-membered N2S4-monoazathiacrown ethers have been synthesized and explored as neutral ionophores for Ag+-selective electrodes.Potentiometric responses reveal that the flexibility of the ligands has great effect on the selectivity and sensitivity to Ag+ions.The electrode based on ionophore 9,10,20,25-tetrahydro-5H,12H-tribenzo[b,n,r][1,7,10,16,4,13]tetrathiadiaza cycloicosine6,13-(7H,14H)-dione(C)with 2-nitrophenyl octyl ether(ο-NPOE)as solvent in a poly(vinyl chloride)(PVC)membrane matrix shows a measuring range of 1.0 × 10-6 to 1.0 × 10-3 mol/L with a Nemstian slope of 54.9 ± 0.3 mV/decade.This electrode has high selectivity for Ag+with negligible interference from many other cations and can be used in a wide pH range of 3.6-9.2.  相似文献   

13.
Shoupu L  Mingqiao Z  Chuanyue D 《Talanta》1994,41(2):279-282
A reversed-phase high-performance liquid chromatographic separation and determination of beryllium(II), aluminium(III) and chromium(III) with chromotrope 2C chelates on a C18-bonded stationary phase is reported. Methanol-water (45:55 v/v) containing 6 x 10(-3)M tetra-n-butylammonium bromide (TBAB) and 2 x 10(-2)M acetate buffer solution (pH 6.0) as mobile phase and with spectrophotometric detection at 530 nm was applied. The method has high sensitivity, the detection limits being 0.2 ppb for beryllium(I), 1 ppb for aluminium(III) and 2 ppb for chromium(III). Under the optimum conditions, most other metal ions did not interfere, e.g. up to 2 mg of Hg(II), Sn(II, IV), Pb(II), Bi(III), Ag(I), Zn(II), Cd(II), Cu(II), 1.5 mg of Fe(II), Co(II), Ni(II), 1.2 mg of Ca(II), Mg(II), Sr(II), Ba(II), 1 mg of Ga(III), In(III), 0.5 mg of Fe(III), 1 mg of Ga(III), In(III), 0.5 mg of Fe(III), 0.4 mg of Th(IV), Zr(IV). The method can be applied to the simultaneous determination of trace amounts of beryllium(II), aluminium(III) and chromium(III), in water, rice, flour and human hair samples.  相似文献   

14.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1997,44(6):1087-1094
A novel potentiometric membrane sensor for potassium ion based on the use of rifamycin as a neutral ionophore is described. The sensing membrane is formulated with 2 wt.% rifamycin-SV, 69 wt.% dibutylsebacate plasticizer and 29 wt.% PVC. Linear and stable potential response with near-Nernstian slope of 56.7 +/- 0.2 mV decade(-1) are obtained over the concentration range 1 x 10(-1)-3 x 10(-5) M K(+). The detection limit is 0.3 microg ml(-1) K(+), the response time is 10-30 s and the working pH range is 4-11. Responses of the sensor toward alkali and alkaline earth metal ions are in the order K(+) > Rb(+) > Cs(+) > Na(+) > NH(4)(+) > Ba(2+) > Mg(2+) > Ca(2+) > Sr(2+) > Li(+). The selectivity coefficient data reveal negligible interference from transition metal ions. Direct potentiometric determination of K(+) in the presence of 10-50-fold excess of alkali and alkaline earth metals gives results with an average recovery of 99.1%, and a mean standard deviation of 1.2%. The data agree fairly well with those obtained by flame photometry.  相似文献   

15.
A highly La(III) ion-selective PVC membrane sensor based on N'-(1-pyridin-2-ylmethylene)-2-furohydrazide (NPYFH) as an excellent sensing material was successfully developed. The electrode shows a good selectivity for La(III) ion with respect to most common cations including alkali, alkaline earth, transition and heavy metal ions. The proposed sensor exhibits a wide linear response with slope of 19.2 +/- 0.6 mV per decade over the concentration range of 1.0 x 10(-6) - 1.0 x 10(-1) M, and a detection limit of 7.0 x 10(-7) M of La(III) ions. The sensor response is independent of pH in the range of 3.5-10.0. The proposed electrode was applied as an indicator electrode in potentiometric titration of La(III) ion with EDTA.  相似文献   

16.
Weng YQ  Yue F  Zhong YR  Ye BH 《Inorganic chemistry》2007,46(19):7749-7755
A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.  相似文献   

17.
Novel 1,3-alternate calix-thiacalix[4]crown trimers bearing crown-5 and crown-6 were prepared. As proven by X-ray diffraction, in a 1:2 mole ratio of ligand to metal ion, the Cs(+) and K(+) ions prefer to be encapsulated in the trimeric thiacalix[4]crown-6 and crown-5, respectively. On the contrary, the Ag(+) ion was found to be entrapped in the central thiacalix spacer as a 1:1 complex confirmed by (1)H NMR spectrosocpy. Variable-temperature (1)H NMR studies for the trimeric thiacalix[4]crown-6 encapsulating the silver ion revealed that the Ag(+) ion oscillates through the central thiacalix spacer with the aid of cation-pi interactions.  相似文献   

18.
A naphthalimide-based fluorescent probe, NPQ, that contains a novel receptor was successfully developed. NPQ exhibited "turn-on" fluorescence and excellent selectivity toward Ag(+) in the presence of various other metal ions in aqueous solution. A series of control compounds were designed and synthesized in order to explore the photoinduced electron transfer (PET) quenching mechanism of NPQ and binding mode of NPQ with Ag(+). Moreover, with the NPQ-Ag(+) complex, I(-) was easily selectively recognized by a marked fluorescence quenching. The live cell imaging experiments demonstrate that NPQ can be used as a fluorescent probe for monitoring Ag(+) in living cells.  相似文献   

19.
A coated-wire ion-selective electrode (ISE) based on cyclam (1,4,8,11-tetraazacyclotetradecane) as a neutral carrier in a polyvinyl chloride (PVC) matrix was fabricated for the determination of Ag(I) ions. The coated-wire ISE exhibited a linear Nernstian response over the range 1 x 10(-1) to 1 x 10(-7) M with a slope of 59 +/- 2 mV per decade change and a detection limit of 5 x 10(-8) M. The ISE shows a greater preference for Ag over other cations with good precision. The electrode was selective towards Ag(I) ions in the presence of 13 different metal ions tested. The selectivity coefficients (K(ij)) were determined for Na(I), K(I), Mg(II), Ca(II), Ba(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Hg(II). The selectivity coefficients of these cations are in the range of 10(-4) to 10(-2). This ISE was used for the determination of free silver and total silver in electroplating bath solutions, additives and brighteners.  相似文献   

20.
The construction, performance characteristics, and application of a novel polymeric membrane coated on a graphite electrode with unique selectivity towards SCN- are reported. The electrode was prepared by incorporating Ni(II)-2,2,4,9,9,11-hexamethyltetraazacyclotetradecanediene perchlorate into a plasticized poly(vinyl chloride) membrane. The influences of membrane composition, pH and foreign ions were investigated. The electrode displays a near Nernstian slope (-57.8 mV decade-1) over a wide concentration range of 1 x 10(-7)-1 x 10(-1) M of SCN- ion. The electrode has a detection limit of 4.8 x 10(-8) M (2.8 ng/cm3) SCN- and shows response times of about 15 s and 120 s for low to high and high to low concentration sequences, respectively. The proposed sensor shows high selectivity towards SCN- over several common organic and inorganic anions. The electrode revealed a great enhancement in selectivity coefficients and detection limit for SCN-, in comparison with the previously reported electrodes. It was successfully applied to the direct determination of SCN- in milk and biological samples, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号