首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The target regions of single-voxel MR spectroscopy often deviate from the cuboidal volume acquired with localization methods based on cross-sectional RF excitations. To diminish partial volume effects spatially 2D-selective RF excitations (2DRF) have been used to excite anatomically defined regions of interest (ROIs). Thereby, segmentation of the 2DRF has been applied to avoid excessive pulse durations yielding “virtual” excitation profiles that are defined upon averaging multiple acquisitions obtained with the different segments. In this work, the feasibility of segmented 2DRF for single-voxel 1H-MR spectroscopy of arbitrarily shaped voxel in the living human brain is demonstrated. The 2DRF segments were chosen to cover a single line of a blipped-planar trajectory in order to minimize chemical shift displacement artifacts and achieve standard echo times of 30 ms. To eliminate unwanted side excitations, a refocusing RF excitation in the blip direction was used. Phantom experiments demonstrate the high spatial selectivity achieved, i.e., the absence of significant signal contaminations from regions outside of the target volume. Although the signal obtained per volume is reduced compared to cross-sectional localization, the better volume coverage of anatomically defined ROIs can deliver an improved signal-to-noise ratio for irregularly shaped ROIs.  相似文献   

2.
Conventional "proton density" and "T2-weighted" spin-echo images are susceptible to motion induced artifact, which is exacerbated by lipid signals. Gradient moment nulling can reduce motion artifact but lengthens the minimum TE, degrading the "proton density" contrast. We designed a pulse sequence capable of optimizing proton density and T2-weighted contrast while suppressing lipid signals and motion induced artifacts. Proton density weighting was obtained by rapid readout gradient reversal immediately after the excitation RF pulse, within a conventional spin-echo sequence. By analyzing the behavior of the macroscopic magnetization and optimizing excitation flip angle, we suppressed T1 contribution to the image, thereby enhancing proton density and T2-weighted contrast with a two- to four-fold reduction of repetition time. This permitted an increased number of averages to be used, reducing motion induced artifacts. Fat suppression in the presence of motion was investigated in two groups of 8 volunteers each by (i) modified Dixon technique, (ii) selective excitation, and (iii) hybrid of both. Elimination of fat signal by the first technique was relatively uniform across the field of view, but it did not fully suppress the ghosts originating from fat motion. Selective excitation, while sensitive to the main field inhomogeneity, largely eliminated the ghosts (0.21 +/- 0.05 vs. 0.29 +/- 0.06, p less than 0.01). The hybrid of both techniques combined with bandwidth optimization, however, showed the best results (0.17 +/- 0.04, p less than 0.001). Variable flip-angle imaging allows optimization of image contrast which, along with averaging and effective fat suppression, significantly improves gradient- and spin-echo imaging, particularly in the presence of motion.  相似文献   

3.
A gradient-echo line scan imaging technique was developed which employs two-dimensional spatially selective radiofrequency (2DRF) pulses for consecutively exciting individual columns of transverse magnetization, i.e., image lines. Although a variety of trajectories are possible for 2DRF excitation, the current implementation involved a blipped-planar trajectory in conjunction with additional saturation RF pulses to suppress side excitations above and below the desired image section, i.e., along the blip direction of the 2DRF pulse. Human brain imaging at 2.0 T (Siemens Vision, Erlangen, Germany) resulted in measuring times of 5.2 s for a 5-mm section at 1.0 x 1.0 mm in-plane resolution. Functional neuroimaging of the motor cortex at 1.2 s temporal resolution and 0.78 x 1.56 mm in-plane resolution exploited the capability of imaging inner volumes (here a 25-mm strip) without signal aliasing.  相似文献   

4.
Ultrashort TE (UTE) sequences allow direct visualization of tissues with very short T2 relaxation times, such as tendons, ligaments, menisci, and cortical bone. In this work, theoretical calculations, simulations, and phantom studies, as well as in vivo imaging were performed to maximize signal-to-noise ratio (SNR) for slice selective RF excitation for 2D UTE sequences. The theoretical calculations and simulations were based on the Bloch equations, which lead to analytic expressions for the optimal RF pulse duration and amplitude to maximize magnetic resonance signal in the presence of rapid transverse relaxation. In steady state, it was found that the maximum signal amplitude was not obtained at the classical Ernst angle, but at an either lower or higher flip angle, depending on whether the RF pulse duration or amplitude was varied, respectively.  相似文献   

5.
Echo-planar imaging is widely used in functional neuroimaging but suffers from its pronounced sensitivity to field inhomogeneities that cause geometric distortions and image blurring which both limit the effective in-plane resolution achievable. In this work, it is shown how inner-field-of-view techniques based on 2D-selective RF excitations (2DRF) can be applied to reduce the field-of-view in the phase-encoding direction without aliasing and increase the in-plane resolution accordingly. Free-induction-decay (FID) EPI and echo-train-shifted (T2*-weighted) and standard (T2-weighted) spin-echo (SE) EPI with in-plane resolutions of up to 0.5×1.0 mm2 (slice thickness 5 mm) were acquired at 3 T. Unwanted signal contributions of 2DRF side excitations were shifted out of the object (FID-EPI) or of the refocusing plane by tilting the excitation plane (SE-EPI). Brain activation in healthy volunteers was investigated with checkerboard and finger-tapping block-design paradigms. Brain activation could be detected with all sequences and contrasts, most reliably with FID-EPI due to its higher signal amplitude and the longer 2DRF excitation that are more sensitive to magnetic field inhomogeneities. In conclusion, inner-FOV EPI based on 2DRF excitations could help to improve the spatial resolution of fMRI of focal target regions, e.g. for applications in the spinal cord.  相似文献   

6.
A method for measuring nuclear magnetic spin-lattice relaxation in solids in the effective field He3 acting in the triply rotating frame (TRF) is described. The method advances the previously described techniques whereby nuclear magnetic resonance and relaxation in the rotating (RF) and doubly rotating frames (DRF) are measured directly. In the present work, the RF and DRF are employed for suppressing the secular part of nuclear dipole-dipole (DD) interactions in the first two orders. As a result, the higher-order DD interactions (four- and five-particle ones) were separated, and their contribution to the nuclear spin-lattice relaxation in the TRF was studied experimentally. The experiments were carried out on protons in polycrystalline benzene. With the introduced technique, an overall spin-lattice relaxation decay in the TRF was recorded continuously during a single radio-frequency pulse with a length not exceeding 1 s. The contribution of multiproton nonsecular DD interactions to the proton spin-lattice relaxation in the TRF was observed selectively as a pronounced local minimum in the temperature dependence of the relaxation timeT 1ϱϱϱ. This contribution corresponds to ultraslow motion of benzene molecules with a rate about γHe3 2π · (101-103) s-1 and is determined quantitatively by specific correlation functions corresponding to the multiparticle nonsecular DD interactions of protons. The prospects of using this method for studying ultraslow atomic and molecular dynamics in solids are discussed.  相似文献   

7.
The effects of varying the inversion or excitation RF pulse flip angles on image contrast and imaging time have been investigated in IR imaging theoretically, with phantoms and with normal volunteers. Signal intensity in an IR pulse sequence as a function of excitation, inversion and refocusing pulse flip angles was calculated from the solution to the Bloch equations and was utilized to determine the contrast behavior of a lesion/liver model. Theoretical and experimental results were consistent with each other. With the TI chosen to suppress the fat signal, optimization of the excitation pulse flip angle results in an increase in lesion/liver contrast or allows reduction in imaging time which, in turn, can be traded for an increased number of averages. This, in normal volunteers, improved spleen/liver contrast-to-noise ratio (9.0 vs. 5.7, n = 8, p less than 0.01) and suppressed respiratory ghosts by 33% (p less than 0.01). Reducing or increasing the inversion pulse from 180 degrees results in shorter TI needed to null the signal from the tissue of interest. Although this decreases the contrast-to-noise ratio, it can substantially increase the number of sections which can be imaged per given TR in conventional IR imaging or during breathold in the snapshot IR (turboFLASH) technique. Thus, the optimization of RF pulses is useful in obtaining faster IR images, increasing the contrast and/or increasing the number of imaging planes.  相似文献   

8.
A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of the local tracer concentration, laser pulse energy, and the intensity distribution. An image doubling and filtering system is used for the simultaneous imaging of two wavelength ranges of toluene LIF onto the chip of a single camera upon excitation at 248 nm. The measurements were performed in a spark-ignition engine with homogeneous charge and yielded temperature images with a single-shot precision of approximately ±?6%.  相似文献   

9.
A laser plasma is produced at the center of a cylindrical cavity while radio-frequency excitation of moderate power is supplied near the TM011 and TE111 vacuum-mode frequencies. Probe and particle collector measurements show density modification of the plasma during its decay due to resonances excited by the RF source. The magnitudes of these density changes are found to be near and exceeding critical (?p = ?RF) density.  相似文献   

10.
This paper describes the development and application of a new fast MRI technique based on the DEFT principle. The sequence named MAgnetization RecoverY for Signal Enhancement (MARYSE) is composed of two completely symmetric gradient echoes separated by a 180 degrees refocusing pulse. The RF pulse scheme, 90 degrees x-180 degrees y-90 degrees -x enables restoration of the transverse magnetization along the longitudinal axis, and consequently artificially increases R1 relaxation rate. In this sequence, the period between the excitation pulse and the restoring pulse (Tem: transverse magnetization evolution time) is very short (< 10 ms). This makes possible a significant increase in signal-to-noise ratio, even with a relatively short repetition time (20 ms). Simulations were performed for different values of Tem and TR at definite T1 and T2 and for different values of T1 and T2 at constant Tem and TR. Relevant signal enhancement for species with long relaxation time constants as compared to classical gradient echo and fast spin-echo imaging was expected. In vitro studies on a fat/water phantom confirmed this simulation. Application of MARYSE to mouse brain imaging permitted to visualize almost completely cerebrospinal fluid of the ventricles, a signal usually partially saturated in fast gradient echo imaging.  相似文献   

11.
雒媛  朱凯然 《波谱学杂志》2020,37(4):515-523
在核四极矩共振(NQR)领域,射频激励脉冲信号的优劣对NQR响应信号有重要影响.针对常规方法中射频激励脉冲参数不可控的问题,本文基于32位闪存微型控制器STM32和直接数字频率合成(DDS)芯片AD9910设计了一种相位可控激励脉冲发生器.采用STM32控制AD9910产生波形参数(脉冲宽度、脉冲间隔、脉冲个数和共振频率等)可控的射频激励脉冲,利用LabVIEW软件平台设计脉冲参数设置界面,并建立计算机与微控制器通信,实现波形参数的精确优化控制.实验结果表明,该方法实现了相位可控的NQR激励脉冲序列,可为后续NQR信号检测提供有效激励源.  相似文献   

12.
Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of I(z)-->I(x) over resonance offsets of +/- 20 kHz and RF variability of +/-5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform I(z)-->0.995I(x) over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (approximately 45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over +/-32 kHz, with phase variations in the spectra <8 degrees and peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.  相似文献   

13.
The application of correlation spectroscopy employing stochastic excitation and the Hadamard transform to time-domain Fourier transform electron paramagnetic resonance (FT-EPR) spectroscopy in the radiofrequency (RF) band is described. An existing, time-domain FT-EPR spectrometer system with a Larmor frequency (L(f)) of 300 MHz was used to develop this technique by incorporating a pseudo-random pulse sequence generator to output the maximum length binary sequence (MLBS, 10- and 11-bit). Software developed to control the EPR system setup, acquire the signals, and post process the data, is outlined. The software incorporates the Hadamard transform algorithm to perform the required cross-correlation of the acquired signal and the MLBS after stochastic excitation. To accommodate the EPR signals, bandwidth extension was accomplished by sampling at a rate many times faster than the RF pulse repetition rate, and subsequent digital signal processing of the data. The results of these experiments showed that there was a decrease in the total acquisition time, and an improved free induction decay (FID) signal-to-noise (S/N) ratio compared to the conventional coherent averaging approach. These techniques have the potential to reduce the RF pulse power to the levels used in continuous wave (CW) EPR while retaining the advantage of time-domain EPR methods. These methods have the potential to facilitate the progression to in vivo FT-EPR imaging of larger volumes.  相似文献   

14.
An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broadband excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-25 kHz for constant RF amplitude anywhere in the range 10-20 kHz, with a pulse length of 1 ms. Simulations transform Iz to greater than 0.99 Ix over the targetted ranges of resonance offset and RF variability. Phase deviations in the final magnetization are less than 2-3 degrees over almost the entire range, with sporadic deviations of 6-9 degrees at a few offsets for the lowest RF (10 kHz) in the optimized range. Experimental performance of the new pulse is in excellent agreement with the simulations, and the robustness of the excitation pulse and a derived refocusing pulse are demonstrated by insertion into conventional HSQC and HMBC-type experiments.  相似文献   

15.
A near-resonance expansion of the solution to the Bloch equations in the presence of a radiofrequency (RF) pulse is presented in this paper. The first-order approximation explicitly demonstrates the nonlinear nature of the Bloch equations and precisely relates the excitation profile with the RF pulse when the flip angle is less than π/2. As an application of this solution, we present a procedure for designing RF pulses to generate symmetric excitation profiles with arbitrary shapes for new encoding approaches such as wavelet encoding.  相似文献   

16.
Luminescence of high density electron-hole plasma in CdSe is observed in the 77–300 K temperature range by picosecond pulse excitation. With increasing temperature from 77 K the stimulated emission band is replaced by the spontaneous emission band. Temperature changes of spectral features of these two bands and also their time dependence after pulse excitation are consistent with the theoretical consideration.  相似文献   

17.
Recent work on the nuclear quadrupole resonance (NQR) investigation of molecular dynamics in the solid state has relied on 2D methods. We report our studies of dynamic processes by 1D shaped pulse NQR spectroscopy. Significant advantages include considerably shorter experimental duration, clear definition of the exchange time window, and avoidance of off-resonance effects. The reorientation of the Cl3C? group in polycrystalline chloral hydrate [Cl3C–CH(OH)2] is considered as a test case. This may be modelled as a three-site exchange process. An analysis of the generalised Bloch–McConnell equation is performed to formulate the kinetic matrix. The present approach involves simultaneous excitation of the sites that undergo chemical exchange by employing a suitably modulated shaped RF pulse, followed by a mixing time, and finally a suitable read pulse for signal detection. The experimental signal intensities are plotted against the mixing time to extract the kinetic parameters, i.e. the exchange rate and the spin-lattice relaxation rate. Variable temperature measurements are carried out to determine the activation parameters. Short experiment times are possible in our 1D mode, enabling a large number of runs to be readily performed as a function of mixing time and temperature. The kinetic and activation parameters obtained in the case of chloral hydrate are in good agreement with recent literature values.  相似文献   

18.
In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.  相似文献   

19.
磁共振现代射频脉冲理论在非均匀场成像中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
在磁共振非均匀场成像中,传统的射频脉冲导致回波信号的衰减.为了减小和消除这种磁共振信号的衰减,在讨论了经典理论的基础上根据非线性动力学中的逆散射理论和Shinnar-Le Roux方法导出了用于非均匀场成像的射频脉冲设计方法.模拟结果表明,采用逆散射理论和Shinnar-Le Roux方法优化的脉冲序列可以明显提高信号的信噪比. 关键词: 磁共振成像 射频脉冲 非线性系统  相似文献   

20.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号